Maximum modulus sets
Thomas Duchamp; Edgar Lee Stout
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 3, page 37-69
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDuchamp, Thomas, and Stout, Edgar Lee. "Maximum modulus sets." Annales de l'institut Fourier 31.3 (1981): 37-69. <http://eudml.org/doc/74507>.
@article{Duchamp1981,
abstract = {We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain $D$ of dimension $N$. If $\Sigma \subset bD$ is a smooth manifold of dimension $N$ and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in $A^2(D)$ with the same smooth $N$-dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in $H_1(D,\{\bf R\})$ vanishes or if $\overline\{D\} \subset \{\bf C\}^N$ is polynomially convex. Finally, the maximum modulus set of an arbitrary $f\in A(D)$ has dimension, in the topological sense, not exceeding $N$.},
author = {Duchamp, Thomas, Stout, Edgar Lee},
journal = {Annales de l'institut Fourier},
keywords = {strongly pseudoconvex domain; maximum modulus set; dimension; peak interpolation set; polynomially convex},
language = {eng},
number = {3},
pages = {37-69},
publisher = {Association des Annales de l'Institut Fourier},
title = {Maximum modulus sets},
url = {http://eudml.org/doc/74507},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Duchamp, Thomas
AU - Stout, Edgar Lee
TI - Maximum modulus sets
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 37
EP - 69
AB - We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain $D$ of dimension $N$. If $\Sigma \subset bD$ is a smooth manifold of dimension $N$ and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in $A^2(D)$ with the same smooth $N$-dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in $H_1(D,{\bf R})$ vanishes or if $\overline{D} \subset {\bf C}^N$ is polynomially convex. Finally, the maximum modulus set of an arbitrary $f\in A(D)$ has dimension, in the topological sense, not exceeding $N$.
LA - eng
KW - strongly pseudoconvex domain; maximum modulus set; dimension; peak interpolation set; polynomially convex
UR - http://eudml.org/doc/74507
ER -
References
top- [1] H. ALEXANDER, Polynomial approximation and hulls in sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-74. Zbl0221.32011MR44 #1841
- [2] A. ANDREOTTI and R. NARASIMHAN, A topological property of Runge pairs, Ann. Math., (2) 76 (1962), 499-509. Zbl0178.42703MR25 #4128
- [3] E. BISHOP, A generalization of the Stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. Zbl0104.09002MR24 #A3502
- [4] D.E. BLAIR, Contact Manifolds in Riemannian Geometry, Springer Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. Zbl0319.53026MR57 #7444
- [5] A. BROWDER, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc., 67 (1961), 515-516. Zbl0107.09501MR24 #A440
- [6] D. BURNS and E.L. STOUT, Extending functions from submanifolds of the boundary, Duke Math., J., 43 (1976), 391-404. Zbl0328.32013MR54 #3028
- [7] H. CARTAN, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99. Zbl0083.30502MR20 #1339
- [8] J. CHAUMAT and A.M. CHOLLET, Ensembles pics pour A∞ (D), Ann. Inst. Fourier, Grenoble, XXIX (1979), 171-200. Zbl0398.32004MR81c:32036
- [9] A.M. DAVIE and B. ØKSENDAL, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), 81-87. Zbl0232.46055MR46 #9394
- [10] H. FEDERER, Geometric Measure Theory, Springer-Verlag New York, Inc., New York, 1969. Zbl0176.00801MR41 #1976
- [11] T. DUCHAMP, The classification of Legendre embeddings, to appear.
- [12] J.E. FORNAESS, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. Zbl0334.32020MR54 #10669
- [13] R. GUNNING and H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. Zbl0141.08601MR31 #4927
- [14] C.D. HILL and G. TAIANI, Families of analytic discs in Cn with boundaries on a prescribed CR submanifold, Ann. Scuola Norm. Sup. Pisa Sci., (IV) V, (1978), 327-380. Zbl0399.32008MR80c:32023
- [15] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. Zbl0117.34001MR24 #A2844
- [16] H. HUREWICZ and H. WALLMAN, Dimension Theory, Princeton University Press, Princeton, 1948. Zbl0036.12501
- [17] V.S. KLEIN, Behavior of Holomorphic Functions at Generating Submanifolds of the Boundary, doctoral dissertation, University of Washington, Seattle, 1979.
- [18] H.B. LAWSON, Lectures on the Quantitative Theory of Foliations, CBMS Regional Conference Series in Mathematics, Number 27, American Mathematical Society, Providence, Rhode Island, 1977. Zbl0343.57014
- [19] L. LOOMIS and S. STERNBERG, Advanced Calculus, Addison-Wesley, Reading, 1968. Zbl0162.35301MR37 #2912
- [20] J. MILNOR, Topology from the Differentiable Viewpoint, University Press of Virginia, Charlottesville, 1965. Zbl0136.20402MR37 #2239
- [21] M. MÜLLER, Geometrisch Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer Gebiete, Bonner Math. Schriften, 78, Bonn, 1975. Zbl0331.32017
- [22] S.I. PINCHUK, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. Zbl0292.32002MR50 #2558
- [23] M. RANGE and Y.-T. SIU, Ck approximation by holomorphic functions and -closed forms on Ck submanifolds of a complex manifold, Math. Ann., 210 (1974), 105-122. Zbl0275.32008
- [24] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Indust., 1183, Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
- [25] W. RUDIN, Peak interpolation manifolds of class C1, Pacific J. Math., 75 (1978), 267-279. Zbl0383.32007MR58 #6346
- [26] W. RUDIN, Lectures on the Edge-of-the-Wedge Theorem, CBMS Regional Conference Series in Mathematics, Number 6, American Mathematical Society, Providence, Rhode Island, 1971. Zbl0214.09001MR46 #9389
- [27] W. RUDIN and E.L. STOUT, Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. Zbl0147.11601MR32 #230
- [28] A. SADULLAEV, A boundary uniqueness theorem in Cn, Math. USSR Sbornik, 30 (1976), 501-514. Zbl0385.32007
- [29] J. SCHWARTZ, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR55 #6457
- [30] B. SHIFFMAN, On the continuation of analytic curves, Math. Ann., 184 (1970), 268-274. Zbl0176.38003MR46 #3828
- [31] N. SIBONY, Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Séminaire Pierre Lelong 1975-1976. Springer Lecture Notes in Mathematics, vol. 578, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0382.32004
- [32] K. STEIN, Analytische Projektion komplexer Mannigfaltigkeiten, Colloque sur les Fonctions de Plusieurs Variables, Brussels, 1953. George Throne, Leige and Masson, Paris, 1953. Zbl0052.08604
- [32a] K. STEIN, Die Existenz Komplexer Basen zu holomorphen Abbildungen, Math. Ann., 136 (1958), 1-8. Zbl0081.30202MR20 #4657
- [33] S. STERNBERG, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. Zbl0129.13102MR33 #1797
- [34] E.L. STOUT, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-on-Hudson and Belmont, 1971. Zbl0286.46049MR54 #11066
- [35] E.L. STOUT, Interpolation manifolds, Recent Developments in Several Complex Variables, Annals of Mathematics Studies, to appear. Zbl0486.32010
- [36] A.E. TUMANOV, A peak set for the disc algebra of metric dimension 2.5 in the three-dimensional unit sphere, Math. USSR Izvestija, 11 (1977), 370-377. Zbl0379.46048MR58 #6349
- [37] B.M. WEINSTOCK, Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), 484-488. Zbl0413.32008MR80e:32010
- [38] R.O. WELLS, Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann., 179 (1969), 123-129. Zbl0167.21604MR38 #6104
- [39] R.O. WELLS, Real analytic subvarieties and holomorphic approximation, Math. Ann., 179 (1969), 130-141. Zbl0167.06704MR39 #476
- [40] A. ZYGMUND, Trigonometric Series, vol. I., Cambridge University Press, Cambridge, 1959. Zbl0085.05601
Citations in EuDML Documents
top- Andrei Iordan, Real analytic maximum modulus manifolds in strictly pseudoconvex boundaries
- Alexander Nagel, Jean-Pierre Rosay, Maximum modulus sets and reflection sets
- Monique Hakim, Valeurs au bord de fonctions holomorphes bornées en plusieurs variables complexes
- Franc Forstneric, Analytic disks with boundaries in a maximal real submanifold of
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.