Maximum modulus sets

Thomas Duchamp; Edgar Lee Stout

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 3, page 37-69
  • ISSN: 0373-0956

Abstract

top
We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain D of dimension N . If Σ b D is a smooth manifold of dimension N and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in A 2 ( D ) with the same smooth N -dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in H 1 ( D , R ) vanishes or if D C N is polynomially convex. Finally, the maximum modulus set of an arbitrary f A ( D ) has dimension, in the topological sense, not exceeding N .

How to cite

top

Duchamp, Thomas, and Stout, Edgar Lee. "Maximum modulus sets." Annales de l'institut Fourier 31.3 (1981): 37-69. <http://eudml.org/doc/74507>.

@article{Duchamp1981,
abstract = {We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain $D$ of dimension $N$. If $\Sigma \subset bD$ is a smooth manifold of dimension $N$ and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in $A^2(D)$ with the same smooth $N$-dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in $H_1(D,\{\bf R\})$ vanishes or if $\overline\{D\} \subset \{\bf C\}^N$ is polynomially convex. Finally, the maximum modulus set of an arbitrary $f\in A(D)$ has dimension, in the topological sense, not exceeding $N$.},
author = {Duchamp, Thomas, Stout, Edgar Lee},
journal = {Annales de l'institut Fourier},
keywords = {strongly pseudoconvex domain; maximum modulus set; dimension; peak interpolation set; polynomially convex},
language = {eng},
number = {3},
pages = {37-69},
publisher = {Association des Annales de l'Institut Fourier},
title = {Maximum modulus sets},
url = {http://eudml.org/doc/74507},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Duchamp, Thomas
AU - Stout, Edgar Lee
TI - Maximum modulus sets
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 37
EP - 69
AB - We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain $D$ of dimension $N$. If $\Sigma \subset bD$ is a smooth manifold of dimension $N$ and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in $A^2(D)$ with the same smooth $N$-dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in $H_1(D,{\bf R})$ vanishes or if $\overline{D} \subset {\bf C}^N$ is polynomially convex. Finally, the maximum modulus set of an arbitrary $f\in A(D)$ has dimension, in the topological sense, not exceeding $N$.
LA - eng
KW - strongly pseudoconvex domain; maximum modulus set; dimension; peak interpolation set; polynomially convex
UR - http://eudml.org/doc/74507
ER -

References

top
  1. [1] H. ALEXANDER, Polynomial approximation and hulls in sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-74. Zbl0221.32011MR44 #1841
  2. [2] A. ANDREOTTI and R. NARASIMHAN, A topological property of Runge pairs, Ann. Math., (2) 76 (1962), 499-509. Zbl0178.42703MR25 #4128
  3. [3] E. BISHOP, A generalization of the Stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. Zbl0104.09002MR24 #A3502
  4. [4] D.E. BLAIR, Contact Manifolds in Riemannian Geometry, Springer Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. Zbl0319.53026MR57 #7444
  5. [5] A. BROWDER, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc., 67 (1961), 515-516. Zbl0107.09501MR24 #A440
  6. [6] D. BURNS and E.L. STOUT, Extending functions from submanifolds of the boundary, Duke Math., J., 43 (1976), 391-404. Zbl0328.32013MR54 #3028
  7. [7] H. CARTAN, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99. Zbl0083.30502MR20 #1339
  8. [8] J. CHAUMAT and A.M. CHOLLET, Ensembles pics pour A∞ (D), Ann. Inst. Fourier, Grenoble, XXIX (1979), 171-200. Zbl0398.32004MR81c:32036
  9. [9] A.M. DAVIE and B. ØKSENDAL, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), 81-87. Zbl0232.46055MR46 #9394
  10. [10] H. FEDERER, Geometric Measure Theory, Springer-Verlag New York, Inc., New York, 1969. Zbl0176.00801MR41 #1976
  11. [11] T. DUCHAMP, The classification of Legendre embeddings, to appear. 
  12. [12] J.E. FORNAESS, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569. Zbl0334.32020MR54 #10669
  13. [13] R. GUNNING and H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. Zbl0141.08601MR31 #4927
  14. [14] C.D. HILL and G. TAIANI, Families of analytic discs in Cn with boundaries on a prescribed CR submanifold, Ann. Scuola Norm. Sup. Pisa Sci., (IV) V, (1978), 327-380. Zbl0399.32008MR80c:32023
  15. [15] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. Zbl0117.34001MR24 #A2844
  16. [16] H. HUREWICZ and H. WALLMAN, Dimension Theory, Princeton University Press, Princeton, 1948. Zbl0036.12501
  17. [17] V.S. KLEIN, Behavior of Holomorphic Functions at Generating Submanifolds of the Boundary, doctoral dissertation, University of Washington, Seattle, 1979. 
  18. [18] H.B. LAWSON, Lectures on the Quantitative Theory of Foliations, CBMS Regional Conference Series in Mathematics, Number 27, American Mathematical Society, Providence, Rhode Island, 1977. Zbl0343.57014
  19. [19] L. LOOMIS and S. STERNBERG, Advanced Calculus, Addison-Wesley, Reading, 1968. Zbl0162.35301MR37 #2912
  20. [20] J. MILNOR, Topology from the Differentiable Viewpoint, University Press of Virginia, Charlottesville, 1965. Zbl0136.20402MR37 #2239
  21. [21] M. MÜLLER, Geometrisch Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer Gebiete, Bonner Math. Schriften, 78, Bonn, 1975. Zbl0331.32017
  22. [22] S.I. PINCHUK, A boundary uniqueness theorem for holomorphic functions of several complex variables, Math. Notes, 15 (1974), 116-120. Zbl0292.32002MR50 #2558
  23. [23] M. RANGE and Y.-T. SIU, Ck approximation by holomorphic functions and A T T -closed forms on Ck submanifolds of a complex manifold, Math. Ann., 210 (1974), 105-122. Zbl0275.32008
  24. [24] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Indust., 1183, Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
  25. [25] W. RUDIN, Peak interpolation manifolds of class C1, Pacific J. Math., 75 (1978), 267-279. Zbl0383.32007MR58 #6346
  26. [26] W. RUDIN, Lectures on the Edge-of-the-Wedge Theorem, CBMS Regional Conference Series in Mathematics, Number 6, American Mathematical Society, Providence, Rhode Island, 1971. Zbl0214.09001MR46 #9389
  27. [27] W. RUDIN and E.L. STOUT, Boundary properties of functions of several complex variables, J. Math. Mech., 14 (1965), 991-1006. Zbl0147.11601MR32 #230
  28. [28] A. SADULLAEV, A boundary uniqueness theorem in Cn, Math. USSR Sbornik, 30 (1976), 501-514. Zbl0385.32007
  29. [29] J. SCHWARTZ, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR55 #6457
  30. [30] B. SHIFFMAN, On the continuation of analytic curves, Math. Ann., 184 (1970), 268-274. Zbl0176.38003MR46 #3828
  31. [31] N. SIBONY, Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes, Séminaire Pierre Lelong 1975-1976. Springer Lecture Notes in Mathematics, vol. 578, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0382.32004
  32. [32] K. STEIN, Analytische Projektion komplexer Mannigfaltigkeiten, Colloque sur les Fonctions de Plusieurs Variables, Brussels, 1953. George Throne, Leige and Masson, Paris, 1953. Zbl0052.08604
  33. [32a] K. STEIN, Die Existenz Komplexer Basen zu holomorphen Abbildungen, Math. Ann., 136 (1958), 1-8. Zbl0081.30202MR20 #4657
  34. [33] S. STERNBERG, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. Zbl0129.13102MR33 #1797
  35. [34] E.L. STOUT, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-on-Hudson and Belmont, 1971. Zbl0286.46049MR54 #11066
  36. [35] E.L. STOUT, Interpolation manifolds, Recent Developments in Several Complex Variables, Annals of Mathematics Studies, to appear. Zbl0486.32010
  37. [36] A.E. TUMANOV, A peak set for the disc algebra of metric dimension 2.5 in the three-dimensional unit sphere, Math. USSR Izvestija, 11 (1977), 370-377. Zbl0379.46048MR58 #6349
  38. [37] B.M. WEINSTOCK, Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), 484-488. Zbl0413.32008MR80e:32010
  39. [38] R.O. WELLS, Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann., 179 (1969), 123-129. Zbl0167.21604MR38 #6104
  40. [39] R.O. WELLS, Real analytic subvarieties and holomorphic approximation, Math. Ann., 179 (1969), 130-141. Zbl0167.06704MR39 #476
  41. [40] A. ZYGMUND, Trigonometric Series, vol. I., Cambridge University Press, Cambridge, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.