Error estimates for discretized Galerkin and collocation boundary element methods for time harmonic Dirichlet screen problems in ℝ³

F. Penzel

Banach Center Publications (1994)

  • Volume: 29, Issue: 1, page 115-134
  • ISSN: 0137-6934

How to cite

top

Penzel, F.. "Error estimates for discretized Galerkin and collocation boundary element methods for time harmonic Dirichlet screen problems in ℝ³." Banach Center Publications 29.1 (1994): 115-134. <http://eudml.org/doc/262593>.

@article{Penzel1994,
author = {Penzel, F.},
journal = {Banach Center Publications},
keywords = {time harmonic Dirichlet screen problems; Galerkin boundary element method; consistency; stability; error estimates; numerical results; collocation methods; quadrature formula},
language = {eng},
number = {1},
pages = {115-134},
title = {Error estimates for discretized Galerkin and collocation boundary element methods for time harmonic Dirichlet screen problems in ℝ³},
url = {http://eudml.org/doc/262593},
volume = {29},
year = {1994},
}

TY - JOUR
AU - Penzel, F.
TI - Error estimates for discretized Galerkin and collocation boundary element methods for time harmonic Dirichlet screen problems in ℝ³
JO - Banach Center Publications
PY - 1994
VL - 29
IS - 1
SP - 115
EP - 134
LA - eng
KW - time harmonic Dirichlet screen problems; Galerkin boundary element method; consistency; stability; error estimates; numerical results; collocation methods; quadrature formula
UR - http://eudml.org/doc/262593
ER -

References

top
  1. [1] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, 1983. Zbl0522.35001
  2. [2] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal. 19 (1988), 613-626. Zbl0644.35037
  3. [3] M. Costabel and W. McLean, Spline collocation for strongly elliptic equations on the torus, Numer. Math. 62 (1992), 511-538. Zbl0767.65079
  4. [4] M. Costabel, F. Penzel and R. Schneider, Error analysis of a boundary element collocation method for a screen problem in ℝ³, Math. Comp. 58 (198) (1992), 575-586. Zbl0765.65108
  5. [5] M. Costabel, F. Penzel and R. Schneider, Convergence of boundary element collocation methods for Dirichlet and Neumann screen problems in ℝ³, Appl. Anal. 49 (1993), 101-117. Zbl0803.65107
  6. [6] M. Costabel and E. Stephan, Duality estimates for the numerical solution of integral equations, Numer. Math. 54 (1988), 339-353. Zbl0663.65141
  7. [7] M. Dauge, Elliptic Boundary Value Problems in Corner Domains - Smoothness and Asymptotics of Solutions, Lecture Notes in Math. 1341, Springer, Berlin 1988. 
  8. [8] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York 1975. Zbl0304.65016
  9. [9] M. G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal. 19 (6) (1982), 1260-1262. Zbl0493.65011
  10. [10] V. J. Ervin and E. P. Stephan, Experimental convergence of boundary element methods for the capacity of the electrified plate, Boundary Elem. 9 (1987), 167-175. 
  11. [11] V. J. Ervin and E. P. Stephan, A boundary-element method with mesh refinement for a weakly singular integral equation, Comm. Appl. Numer. Methods 7 (4) (1991), 273-280. Zbl0731.65119
  12. [12] V. J. Ervin, E. P. Stephan and S. Abou el-Seoud, An improved boundary element method for the charge density of a thin electrified plate in ℝ³, Math. Methods Appl. Sci. 13 (1990), 291-303. 
  13. [13] T. Ha Duong, On the transient acoustic scattering by a flat object, Japan J. Appl. Math. 7 (3) (1990), 489-513. Zbl0719.35063
  14. [14] G. C. Hsiao, P. Kopp and W. L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing 25 (1980), 89-130. Zbl0419.65088
  15. [15] G. C. Hsiao and W. L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), 449-481. Zbl0352.45016
  16. [16] R. C. MacCamy and E. Stephan, Solution procedures for three-dimensional eddy current problems, ibid. 101 (1984), 348-379. Zbl0563.35054
  17. [17] J. C. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans ℝ³, RAIRO 7 (1973), 105-129. Zbl0277.65074
  18. [18] F. Penzel, Error estimates for a discretized Galerkin method for a boundary integral equation in two dimensions, Numer. Methods Partial Differential Equations 8 (1992), 405-421. Zbl0756.65130
  19. [19] F. Penzel, Error estimates for discretized Galerkin and collocation boundary element methods for time harmonic Dirichlet screen problems in ℝ³, THD-Preprint, Technische Hochschule Darmstadt, 1991. 
  20. [20] T. v. Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder-Singularitäten und Approximation mit Randelementmethoden, Dissertation, Darmstadt 1989. Zbl0709.73009
  21. [21] S. Prössdorf, Numerische Behandlung singulärer Integralgleichungen, Z. Angew. Math. Mech. 69 (1989), T5-T13. 
  22. [22] S. Prössdorf and A. Rathsfeld, Quadrature and Collocation methods for singular integral equations on curves with corners, Z. Anal. Anwendungen 8 (1989), 197-220. Zbl0686.65096
  23. [23] S. Prössdorf and R. Schneider, A spline collocation method for multidimensional strongly elliptic pseudodifferential operators of order zero, Integral Equations Operator Theory 14 (1991), 399-435. Zbl0737.47043
  24. [24] S. Prössdorf and R. Schneider, Spline approximation methods for multidimensional periodic pseudodifferential equations, Integral Equations Operator Theory 15 (1992), 626-672. Zbl0757.65146
  25. [25] A. Rathsfeld, On the stability of quadrature methods for the double layer potential equation over the boundary of the polyhedron, manuscript, May 1991. 
  26. [26] G. Schmidt, Splines und die näherungsweise Lösung von Pseudodifferentialgleichungen auf geschlossenen Kurven, report R-MATH-09/86, Karl-Weierstrass-Institut, Berlin 1986. 
  27. [27] R. Schneider, Stability of a spline collocation method for strongly elliptic multidimensional singular integral equations, Numer. Math. 58 (1991), 855-873. Zbl0724.65134
  28. [28] C. Schwab and W. L. Wendland, On numerical cubatures of singular surface integrals in boundary element methods, ibid. 62 (1992), 343-369. Zbl0761.65012
  29. [29] E. Stephan, Boundary integral equations for screen problems in ℝ³, Integral Equations Operator Theory 10 (1987), 236-257. Zbl0653.35016
  30. [30] A. H. Strout and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, 1966. Zbl0156.17002
  31. [31] W. L. Wendland, Boundary element methods and their asymptotic convergence, in: Lecture Notes of the CISM Summer School on 'Theoretical Acoustics and Numerical Technique', Internat. Centre for Mechanical Sciences, Udine, Italy, 1983, P. Filippi (ed.), Lecture Notes in Phys., Springer, 135-216. 
  32. [32] W. L. Wendland, Strongly elliptic boundary integral equations, in: The State of the Art in Numerical Analysis, A. Iserles and M. J. D. Powell (eds.), Clarendon Press, Oxford 1987, 511-562. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.