Uniform stability and semi-stability of motions in dynamical systems on metric spaces

Andrzej Pelczar

Annales Polonici Mathematici (1996)

  • Volume: 63, Issue: 2, page 115-136
  • ISSN: 0066-2216

Abstract

top
Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.

How to cite

top

Andrzej Pelczar. "Uniform stability and semi-stability of motions in dynamical systems on metric spaces." Annales Polonici Mathematici 63.2 (1996): 115-136. <http://eudml.org/doc/262614>.

@article{AndrzejPelczar1996,
abstract = {Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.},
author = {Andrzej Pelczar},
journal = {Annales Polonici Mathematici},
keywords = {stability; semi-stability; limit set; prolongational limit set; generalized prolongational limit set; asymptotic equivalence; semistability of orbits; pseudo-dynamical semi-systems; limit sets; Lyapunov functions},
language = {eng},
number = {2},
pages = {115-136},
title = {Uniform stability and semi-stability of motions in dynamical systems on metric spaces},
url = {http://eudml.org/doc/262614},
volume = {63},
year = {1996},
}

TY - JOUR
AU - Andrzej Pelczar
TI - Uniform stability and semi-stability of motions in dynamical systems on metric spaces
JO - Annales Polonici Mathematici
PY - 1996
VL - 63
IS - 2
SP - 115
EP - 136
AB - Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.
LA - eng
KW - stability; semi-stability; limit set; prolongational limit set; generalized prolongational limit set; asymptotic equivalence; semistability of orbits; pseudo-dynamical semi-systems; limit sets; Lyapunov functions
UR - http://eudml.org/doc/262614
ER -

References

top
  1. [1] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970. 
  2. [2] A. Pelczar, Semi-stability of motions and regular dependence of limit sets on points in general semi-systems, Ann. Polon. Math. 42 (1983), 263-282. Zbl0589.34041
  3. [3] A. Pelczar, Limit sets and prolongations in generalized (multivalued) semi-systems, preprint WS-363, Vrije Universiteit Amsterdam, Faculteit Wiskunde en Informatica, 1990. 
  4. [4] A. Pelczar, A contribution to the theory of generalized semi-systems: asymptotic equivalence and generalized prolongational limit sets, to appear. 
  5. [5] J. Sabine de Lis, An elementary explicit example of unbounded limit behaviour on the plane, Rev. Acad. Canaria Cienc. 5 (1) (1993), 41-46. 
  6. [6] A. Trzepizur, L'équivalence asymptotique au sens de Ważewski: un analogue d'un théorème de Levinson, Bull. Polish Acad. Sci. Math. 36 (1988), 39-46. 
  7. [7] T. Ważewski, Sur la coïncidence asymptotique des intégrales de deux systèmes d'équations différentielles, Bull. Acad. Polon. Sci. Lettres Sér. A Sci. Math. 1949, 147-150. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.