On global solutions to a nonlinear Alfvén wave equation

XS. Feng; F. Wei

Annales Polonici Mathematici (1995)

  • Volume: 62, Issue: 2, page 155-172
  • ISSN: 0066-2216

Abstract

top
We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.

How to cite

top

XS. Feng, and F. Wei. "On global solutions to a nonlinear Alfvén wave equation." Annales Polonici Mathematici 62.2 (1995): 155-172. <http://eudml.org/doc/262630>.

@article{XS1995,
abstract = {We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.},
author = {XS. Feng, F. Wei},
journal = {Annales Polonici Mathematici},
keywords = {nonlinear Alfvén wave; existence and uniqueness of global solution; spatial asymptotic behavior; finite-beta plasma; Cauchy problem; Hilbert transform; global a priori estimates; existence; uniqueness; asymptotic behaviour},
language = {eng},
number = {2},
pages = {155-172},
title = {On global solutions to a nonlinear Alfvén wave equation},
url = {http://eudml.org/doc/262630},
volume = {62},
year = {1995},
}

TY - JOUR
AU - XS. Feng
AU - F. Wei
TI - On global solutions to a nonlinear Alfvén wave equation
JO - Annales Polonici Mathematici
PY - 1995
VL - 62
IS - 2
SP - 155
EP - 172
AB - We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.
LA - eng
KW - nonlinear Alfvén wave; existence and uniqueness of global solution; spatial asymptotic behavior; finite-beta plasma; Cauchy problem; Hilbert transform; global a priori estimates; existence; uniqueness; asymptotic behaviour
UR - http://eudml.org/doc/262630
ER -

References

top
  1. [1] C. A. Bardos, Regularity theorem for parabolic equations, J. Funct. Anal. 7 (1971), 311-322. Zbl0214.12302
  2. [2] XS. Feng, The existence of global weak solutions for the equation of ion acoustic waves with Landau damping, Math. Appl. 7 (1994), 230-234 (in Chinese). Zbl0914.35034
  3. [3] XS. Feng, The global Cauchy problem for a nonlinear Schrödinger equation, to appear. Zbl0841.35087
  4. [4] XS. Feng and Y. Han, On the Cauchy problem for the third order Benjamin-Ono equation, J. London Math. Soc., to appear. 
  5. [5] N. Hayashi, On the derivative Schrödinger equation, Phys. D 55 (1992), 14-36. Zbl0741.35081
  6. [6] R. J. Iorio, Jr., On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential Equations 11 (1986), 1031-1081. Zbl0608.35030
  7. [7] D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978), 798-801. Zbl0383.35015
  8. [8] C. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 255-288. Zbl0786.35121
  9. [9] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, Gauthier-Villars, Paris, 1969. 
  10. [10] J. L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, Tome I, Dunod, Paris, 1968. Zbl0165.10801
  11. [11] E. Mjølhus and J. Wyller, Nonlinear Alfvén waves in a finite-beta plasma, J. Plasma Physics 40 (1988), 299-318. 
  12. [12] W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966), 543-551. Zbl0185.20103
  13. [13] M. Tsutsumi, Weighted Sobolev spaces, and rapidly descreasing solutions of some nonlinear dispersive wave equations, J. Differential Equations 42 (1981), 260-281. Zbl0488.35071
  14. [14] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation, existence and uniqueness theorem, Funkcial. Ekvac. 23 (1980), 259-277. 
  15. [15] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation, Funkcial. Ekvac. 24 (1981), 85-94. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.