On global solutions to a nonlinear Alfvén wave equation
Annales Polonici Mathematici (1995)
- Volume: 62, Issue: 2, page 155-172
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topXS. Feng, and F. Wei. "On global solutions to a nonlinear Alfvén wave equation." Annales Polonici Mathematici 62.2 (1995): 155-172. <http://eudml.org/doc/262630>.
@article{XS1995,
abstract = {We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.},
author = {XS. Feng, F. Wei},
journal = {Annales Polonici Mathematici},
keywords = {nonlinear Alfvén wave; existence and uniqueness of global solution; spatial asymptotic behavior; finite-beta plasma; Cauchy problem; Hilbert transform; global a priori estimates; existence; uniqueness; asymptotic behaviour},
language = {eng},
number = {2},
pages = {155-172},
title = {On global solutions to a nonlinear Alfvén wave equation},
url = {http://eudml.org/doc/262630},
volume = {62},
year = {1995},
}
TY - JOUR
AU - XS. Feng
AU - F. Wei
TI - On global solutions to a nonlinear Alfvén wave equation
JO - Annales Polonici Mathematici
PY - 1995
VL - 62
IS - 2
SP - 155
EP - 172
AB - We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.
LA - eng
KW - nonlinear Alfvén wave; existence and uniqueness of global solution; spatial asymptotic behavior; finite-beta plasma; Cauchy problem; Hilbert transform; global a priori estimates; existence; uniqueness; asymptotic behaviour
UR - http://eudml.org/doc/262630
ER -
References
top- [1] C. A. Bardos, Regularity theorem for parabolic equations, J. Funct. Anal. 7 (1971), 311-322. Zbl0214.12302
- [2] XS. Feng, The existence of global weak solutions for the equation of ion acoustic waves with Landau damping, Math. Appl. 7 (1994), 230-234 (in Chinese). Zbl0914.35034
- [3] XS. Feng, The global Cauchy problem for a nonlinear Schrödinger equation, to appear. Zbl0841.35087
- [4] XS. Feng and Y. Han, On the Cauchy problem for the third order Benjamin-Ono equation, J. London Math. Soc., to appear.
- [5] N. Hayashi, On the derivative Schrödinger equation, Phys. D 55 (1992), 14-36. Zbl0741.35081
- [6] R. J. Iorio, Jr., On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential Equations 11 (1986), 1031-1081. Zbl0608.35030
- [7] D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978), 798-801. Zbl0383.35015
- [8] C. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 255-288. Zbl0786.35121
- [9] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, Gauthier-Villars, Paris, 1969.
- [10] J. L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, Tome I, Dunod, Paris, 1968. Zbl0165.10801
- [11] E. Mjølhus and J. Wyller, Nonlinear Alfvén waves in a finite-beta plasma, J. Plasma Physics 40 (1988), 299-318.
- [12] W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math. 19 (1966), 543-551. Zbl0185.20103
- [13] M. Tsutsumi, Weighted Sobolev spaces, and rapidly descreasing solutions of some nonlinear dispersive wave equations, J. Differential Equations 42 (1981), 260-281. Zbl0488.35071
- [14] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation, existence and uniqueness theorem, Funkcial. Ekvac. 23 (1980), 259-277.
- [15] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation, Funkcial. Ekvac. 24 (1981), 85-94.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.