New reduction in the Jacobian conjecture.
Drużkowski, Ludwik M. (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Drużkowski, Ludwik M. (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Ludwik M. Drużkowski (1991)
Annales Polonici Mathematici
Similarity:
We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set (resp. ), then (f,g) is bijective.
Daniel Davies (1996)
Colloquium Mathematicae
Similarity:
Sławomir Kołodziej (1991)
Annales Polonici Mathematici
Similarity:
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form + terms of degree < m+n.
Brusadin, Sabrina, Gorni, Gianluca (2006)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Haas, Bertrand (2002)
Beiträge zur Algebra und Geometrie
Similarity:
Arno van den Essen (1995)
Annales Polonici Mathematici
Similarity:
Let F = X + H be a cubic homogeneous polynomial automorphism from to . Let be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that . We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.
Michael Filaseta, Sergeĭ Konyagin (1998)
Colloquium Mathematicae
Similarity:
Espedito De Pascale (1993)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.
Jerzy Browkin (1999)
Colloquium Mathematicae
Similarity:
T. Cochrane and R. E. Dressler [CD] proved that the abc-conjecture implies that, for every > 0, the gap between two consecutive numbers A with two exceptions given in Table 2.