New reduction in the Jacobian conjecture.
Drużkowski, Ludwik M. (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Drużkowski, Ludwik M. (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Ludwik M. Drużkowski (1991)
Annales Polonici Mathematici
Similarity:
We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set (resp. ), then (f,g) is bijective.
Daniel Davies (1996)
Colloquium Mathematicae
Similarity:
Sławomir Kołodziej (1991)
Annales Polonici Mathematici
Similarity:
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form + terms of degree < m+n.
Brusadin, Sabrina, Gorni, Gianluca (2006)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Haas, Bertrand (2002)
Beiträge zur Algebra und Geometrie
Similarity:
Arno van den Essen (1995)
Annales Polonici Mathematici
Similarity:
Let F = X + H be a cubic homogeneous polynomial automorphism from to . Let be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that . We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.
Michael Filaseta, Sergeĭ Konyagin (1998)
Colloquium Mathematicae
Similarity:
Espedito De Pascale (1993)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Schauder’s Conjecture (i.eėvery compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces.
Jerzy Browkin (1999)
Colloquium Mathematicae
Similarity:
T. Cochrane and R. E. Dressler [CD] proved that the abc-conjecture implies that, for every > 0, the gap between two consecutive numbers A with two exceptions given in Table 2.