Enclosures and semi-analytic discretization of boundary value problems

c. Grossmann

Banach Center Publications (1994)

  • Volume: 29, Issue: 1, page 283-304
  • ISSN: 0137-6934

How to cite

top

Grossmann, c.. "Enclosures and semi-analytic discretization of boundary value problems." Banach Center Publications 29.1 (1994): 283-304. <http://eudml.org/doc/262668>.

@article{Grossmann1994,
author = {Grossmann, c.},
journal = {Banach Center Publications},
keywords = {enclosures; semi-analytic discretization; monotonic discretization; upper and lower bounds; two-point boundary problems; singularly perturbed problems},
language = {eng},
number = {1},
pages = {283-304},
title = {Enclosures and semi-analytic discretization of boundary value problems},
url = {http://eudml.org/doc/262668},
volume = {29},
year = {1994},
}

TY - JOUR
AU - Grossmann, c.
TI - Enclosures and semi-analytic discretization of boundary value problems
JO - Banach Center Publications
PY - 1994
VL - 29
IS - 1
SP - 283
EP - 304
LA - eng
KW - enclosures; semi-analytic discretization; monotonic discretization; upper and lower bounds; two-point boundary problems; singularly perturbed problems
UR - http://eudml.org/doc/262668
ER -

References

top
  1. [1] H. Abhari and C. Grossmann, Approximate bases for boundary value problems and applications to MID-techniques, Z. Angew. Math. Mech. 72 (1992), 83-91. Zbl0763.65062
  2. [2] H. Abhari and M. Al-Zanaidi, Computational aspects of monotone iteration discretization algorithm, preprint, TU Dresden, 07-01-88. 
  3. [3] R. A. Adams, Sobolev Spaces, Academic Press, New York 1975. 
  4. [4] E. Adams, Invers-Monotonie, direkte und indirekte Intervallmethoden, Forschungszentrum Graz, Ber. 185 (1982). Zbl0506.65021
  5. [5] E. Adams, R. Ansorge, C. Grossmann and H.-G. Roos (eds.), Discretization in Differential Equations and Enclosures, Akademie-Verlag, Berlin 1987. Zbl0636.00010
  6. [6] E. Adams, D. Cordes and H. Keppler, Enclosure methods as applied to linear periodic ODEs and matrices, Z. Angew. Math. Mech. 70 (1990), 565-578. Zbl0739.65059
  7. [7] E. Adams und H. Spreuer, Konvergente numerische Schrankenkonstruktionen mit Spline-Funktionen für nichtlineare gewöhnliche bzw. parabolische Randwertaufgaben, in: K. Nickel (ed.), Interval Mathematics, Springer, Berlin 1975. Zbl0304.65072
  8. [8] M. Al-Zanaidi and C. Grossmann, Monotone discretization in boundary value problems using PASCAL-SC, in: I. Marek (ed.), Proc. ISNA 87, Teubner, Leipzig 1988, 91-96. Zbl0681.65055
  9. [9] M. Al-Zanaidi and C. Grossmann, Monotone iteration discretization algorithm for BVP's, Computing 31 (1989), 59-74. 
  10. [10] M. Al-Zanaidi and C. Grossmann, 1D-grid generation by monotone iteration discretization, ibid. 34 (1990), 377-390. Zbl0693.65053
  11. [11] N. Anderson and A. M. Arthurs, Variational solutions of the Thomas-Fermi equations, Quart. Appl. Math. 39 (1981), 127-129. Zbl0462.49042
  12. [12] S. Carl, The monotone iterative technique for a parabolic boundary value problem with discontinuous nonlinearity, Nonlinear Anal. 13 (1989), 1399-1407. Zbl0696.35083
  13. [13] S. Carl and C. Grossmann, Iterative spline bounds for systems of boundary value problems, in: J. W. Schmidt and H. Späth (eds.), Splines in Numerical Analysis, Akademie-Verlag, Berlin 1989, 19-30. Zbl0673.65042
  14. [14] S. Carl and C. Grossmann, Monotone enclosure for elliptic and parabolic systems with nonmonotone nonlinearities, J. Math. Anal. Appl. 151 (1990), 190-202. Zbl0778.65074
  15. [15] S. Carl and S. Heikkilä, On extremal solutions of an elliptic boundary value problem involving discontinuous nonlinearities, preprint, Univ. Oulu, 1990; to appear in Differential Integral Equations. Zbl0785.35034
  16. [16] C. Y. Chan and Y. C. Hon, A constructive solution for a generalized Thomas-Fermi theory of ionized atoms, Quart. Appl. Math. 45 (1987), 591-599. Zbl0639.34021
  17. [17] R. C. Duggan and C. Goodmann, Pointwise bounds for a nonlinear heat conduction model of the human head, Bull. Math. Biol. 48 (1986), 229-236. Zbl0585.92011
  18. [18] A. Felgenhauer, Monotone discretization of the Poisson equation in the plane, to appear. 
  19. [19] R. C. Flagg, C. D. Luning and W. L. Perry, Implementation of new iterative techniques for solutions of Thomas-Fermi and Emden-Fowler equations, J. Comput. Phys. 38 (1980), 396-405. Zbl0456.65054
  20. [20] E. C. Gartland, On the uniform convergence of the Scharfetter-Gummel discretization, preprint, Kent State Univ., Feb. 1991. Zbl0765.65112
  21. [21] E. C. Gartland and C. Grossmann, Semianalytic solution of boundary value problems by using approximated operators, Z. Angew. Math. Mech. 72 (1992), 615-619. Zbl0771.65045
  22. [22] C. Grossmann, Monotone Einschließung höherer Ordnung für 2-Punkt-Randwertauf- gaben, Z. Angew. Math. Mech. 67 (1987), T475-T477. 
  23. [23] C. Grossmann, Monotone discretization of two-point boundary value problems and related numerical methods, in [5], 99-122. 
  24. [24] C. Grossmann, Semianalytic discretization of weakly nonlinear boundary value problems with variable coefficients. Z. Anal. Anwendungen 10 (1991), 513-523. Zbl0760.65077
  25. [25] C. Grossmann, Enclosures of the solution of the Thomas-Fermi equation by monotone discretization, J. Comput. Phys. (1992), 26-38. 
  26. [26] C. Grossmann und M. Krätzschmar, Monotone Diskretisierung und adaptive Gittergenerierung für Zwei-Punkt-Randwertaufgaben, Z. Angew. Math. Mech. 65 (1985), T264-T266. Zbl0621.65093
  27. [27] C. Grossmann, M. Krätzschmar und H.-G. Roos, Gleichmäßig einschließende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgaben, Numer. Math. 49 (1986), 95-110. Zbl0621.65092
  28. [28] C. Grossmann and H.-G. Roos, Feedback grid generation via monotone discretization for two-point boundary-value problems, IMA J. Numer. Anal. 6 (1986), 421-432. Zbl0655.65105
  29. [29] C. Grossmann and H.-G. Roos, Uniform enclosure of high order for boundary value problems by monotone discretization, Math. Comp. 53 (1989), 609-617. Zbl0673.34025
  30. [30] C. Grossmann and H.-G. Roos, Convergence analysis of higher order monotone discretization, Wiss. Z. Tech. Univ. Dresden 38 (1989), 155-168. Zbl0675.65081
  31. [31] C. Grossmann and H.-G. Roos, Enclosing discretization for singular and singularly perturbed boundary value problems, in: H.-G. Roos, A. Felgenhauer and L. Angermann (eds.), Numerical Methods in Singular Perturbed Problems, TU Dresden, 1991, 71-82. 
  32. [32] G. Koeppe, H.-G. Roos and L. Tobiska, An enclosure generating modification of the method of discretization in time, Comment. Math. Univ. Carolin. 28 (1987), 447-453. Zbl0635.65122
  33. [33] M. Krätzschmar, Iterationsverfahren zur Lösung schwach nichtlinearer elliptischer Randwertaufgaben mit monotoner Lösungseinschließung, Dissertation, TU Dresden, 1983. 
  34. [34] U. Kulisch (ed.), PASCAL-SC, Pascal Extension for Scientific Computation, Wiley, New York and Teubner, Stuttgart 1987. 
  35. [35] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, 1985. Zbl0658.35003
  36. [36] R. Lohner, Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen, Dissertation, Univ. Karlsruhe, 1988. Zbl0663.65074
  37. [37] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York 1970. Zbl0241.65046
  38. [38] M. Plum, Numerical existence proofs and explicit bounds for solutions of nonlinear elliptic boundary value problems, to appear. 
  39. [39] H.-G. Roos, The Rothe method and monotone discretization for parabolic equations, in [5], 155-166. 
  40. [40] H.-G. Roos, Uniformly enclosing discretization methods and grid generation for semilinear boundary value problems with first order terms, Apl. Mat. 34 (1989), 274-284. Zbl0685.65069
  41. [41] H.-G. Roos, A uniformly convergent discretization method for singularly perturbed boundary value problems of the fourth order, Zb. Rad. Prirod.-Mat. Fak. Novi Sad Ser. Mat. 19 (1989), 51-64. Zbl0719.65067
  42. [42] H.-G. Roos, Global uniformly convergent schemes for a singularly perturbed boundary-value problem using patched base spline functions, J. Comput. Appl. Math. 29 (1990), 69-77. Zbl0686.65048
  43. [43] H.-G. Roos, Uniform enclosing discretization methods for semilinear boundary value problems, in: Nonlinear Analysis and Mathematical Modelling, Banach Center Publ. 24, PWN, Warszawa 1990, 257-268. 
  44. [44] J. W. Schmidt, Ein Einschließungsverfahren für Lösungen fehlerbehafteter linearer Gleichungen, Period. Math. Hungar. 13 (1982), 29-37. Zbl0496.65014
  45. [45] J. Schröder, Operator Inequalities, Academic Press, New York 1980. 
  46. [46] J. Schröder, A method for producing verified results for two-point boundary value problems, in: Comput. Suppl. 6, Springer, Vienna 1988, 9-22. 
  47. [47] J. Schröder, Operator inequalities and applications, in: E. W. Norrie (ed.), Inequalities, Marcel Dekker, New York 1991, 163-210. 
  48. [48] J. Sprekels and H. Voss, Pointwise inclusions of fixed points by finite dimensional iteration schemes, Numer. Math. 32 (1979), 381-392. Zbl0393.65052
  49. [49] G. Vanden Berghe and H. De Meyer, Accurate computation of higher Sturm-Liouville eigenvalues, to appear. Zbl0716.65079
  50. [50] R. Voller, Enclosure of solutions of weakly nonlinear elliptic boundary value problems and their computation, Computing 42 (1989), 245-258. Zbl0681.65076
  51. [51] W. Walter, Differential and Integral Inequalities, Springer, Berlin 1970. 
  52. [52] J. Weissinger, A kind of difference methods for enclosing solutions of ordinary linear boundary value problems, in: Comput. Suppl. 6, Springer, Vienna 1988, 23-32. Zbl0658.65072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.