Local behaviour of operators

Vladimír Müller

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 251-258
  • ISSN: 0137-6934

How to cite

top

Müller, Vladimír. "Local behaviour of operators." Banach Center Publications 30.1 (1994): 251-258. <http://eudml.org/doc/262680>.

@article{Müller1994,
author = {Müller, Vladimír},
journal = {Banach Center Publications},
keywords = {operator polynomials; local spectral radius; local capacity; invariant subspace problem},
language = {eng},
number = {1},
pages = {251-258},
title = {Local behaviour of operators},
url = {http://eudml.org/doc/262680},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Müller, Vladimír
TI - Local behaviour of operators
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 251
EP - 258
LA - eng
KW - operator polynomials; local spectral radius; local capacity; invariant subspace problem
UR - http://eudml.org/doc/262680
ER -

References

top
  1. [1] C. Apostol, On the left essential spectrum and non-cyclic operators in Banach spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1141-1147. Zbl0246.47007
  2. [2] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland Math. Library 42, North-Holland, Amsterdam, 1988. 
  3. [3] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314. Zbl0375.47001
  4. [4] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koefficienten, Math. Z. 17 (1923), 228-249. 
  5. [5] P. R. Halmos, Capacity in Banach algebras, Indiana Univ. Math. J. 20 (1971), 855-863. Zbl0196.14803
  6. [6] R. Harte, Tensor products, multiplication operators and the spectral mapping theorem, Proc. Roy. Irish Acad. Sect. A 73 (1973), 285-302. Zbl0265.47034
  7. [7] R. Harte and T. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253-256. Zbl0393.47001
  8. [8] V. Müller, On quasialgebraic operators in Banach spaces, J. Operator Theory 17 (1987), 291-300. Zbl0618.47001
  9. [9] V. Müller, Local spectral radius formula for operators in Banach spaces, Czechoslovak Math. J. 38 (1988), 726-729. Zbl0707.47005
  10. [10] V. Müller, Local behaviour of the polynomial calculus of operators, J. Reine Angew. Math. 430 (1992), 61-68. Zbl0749.47002
  11. [11] V. Müller, On the essential approximate point spectrum of operators, Integral Equations Operator Theory 15 (1992), 1033-1041. Zbl0781.47021
  12. [12] V. Müller, A note on joint capacities in Banach algebras, Czechoslovak Math. J. 43 (1993), 367-382. 
  13. [13] V. Müller, On the joint essential spectrum of commuting operators, Acta Sci. Math. (Szeged) 57 (1993), 199-205. Zbl0828.47003
  14. [14] V. Müller and A. Sołtysiak, On local joint capacities of operators, Czechoslovak Math. J. 43 (1993), 743-751. Zbl0804.47006
  15. [15] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. Zbl0174.44203
  16. [16] D. S. G. Stirling, The joint capacity of elements of Banach algebras, J. London Math. Soc. 10 (1975), 374-389. Zbl0302.46035
  17. [17] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. Zbl0268.47006
  18. [18] V. P. Zakharyuta, Transfinite diameter, Chebyshev constant and a capacity of a compact set in n , Mat. Sb. 96 (1975), 374-389 (in Russian). Zbl0324.32009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.