Some Tauberian theorems related to operator theory
Banach Center Publications (1994)
- Volume: 30, Issue: 1, page 21-34
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. R. Allan, A. G. O'Farrell and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545. Zbl0652.46041
- [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. Zbl0652.47022
- [3] W. Arendt and C. J. K. Batty, A complex Tauberian theorem and mean ergodic semigroups, preprint. Zbl0836.47032
- [4] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), 412-448. Zbl0765.45009
- [5] C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), 783-804. Zbl0716.44001
- [6] C. J. K. Batty, Asymptotic behaviour of semigroups of operators, this volume, 35-52. Zbl0818.47034
- [7] C. J. K. Batty and Vũ Quôc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), 805-818.
- [8] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. Zbl0144.06402
- [9] G. Doetsch, Handbuch der Laplace-Transformation, I, Birkhäuser, Basel, 1950. Zbl0040.05901
- [10] G. H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc. 8 (1910), 301-320. Zbl41.0278.02
- [11] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957.
- [12] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Univ. Press, Cambridge, 1932 (reprinted 1990). Zbl0006.39701
- [13] A. E. Ingham, On Wiener's method in Tauberian theorems, Proc. London Math. Soc. 38 (1935), 458-480. Zbl0010.35202
- [14] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
- [15] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108-115. Zbl0496.10027
- [16] J. E. Littlewood, On the converse of Abel's theorem on power series, Proc. London Math. Soc. 9 (1911), 434-448. Zbl42.0276.01
- [17] D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), 693-696. Zbl0444.10033
- [18] H. R. Pitt, General Tauberian theorems, Proc. London Math. Soc. 44 (1938), 243-288. Zbl0019.10904
- [19] T. J. Ransford, Some quantitative Tauberian theorems for power series, Bull. London Math. Soc. 20 (1988), 37-44. Zbl0651.30004
- [20] M. Riesz, Über eine Satz des Herrn Fatou, J. Reine Angew. Math. 140 (1911), 89-99. Zbl42.0277.01
- [21] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- [22] A. Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh. Math. Phys. 8 (1897), 273-277.
- [23] E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, Oxford, 1932. Zbl0005.21004
- [24] J. van de Lune, An Introduction to Tauberian Theory: from Tauber to Wiener, Stichting Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1986.
- [25] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, 1941. Zbl0063.08245
- [26] D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971. Zbl0219.44001
- [27] N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1-100. Zbl0004.05905
- [28] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge Univ. Press, Cambridge, 1933 (reprinted 1988). Zbl0006.05401
- [29] N. Wiener, I am a Mathematician, Doubleday, New York, 1956. Zbl0071.00415