The use of D-modules to study exponential polynomials

C. Berenstein; A. Yger

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 77-90
  • ISSN: 0137-6934

Abstract

top
This is a summary of recent work where we introduced a class of D-modules adapted to study ideals generated by exponential polynomials.

How to cite

top

Berenstein, C., and Yger, A.. "The use of D-modules to study exponential polynomials." Banach Center Publications 31.1 (1995): 77-90. <http://eudml.org/doc/262768>.

@article{Berenstein1995,
abstract = {This is a summary of recent work where we introduced a class of D-modules adapted to study ideals generated by exponential polynomials.},
author = {Berenstein, C., Yger, A.},
journal = {Banach Center Publications},
keywords = {division problem; -module; localizability of ideals; exponential polynomials; Paley-Wiener algebra; interpolation problem},
language = {eng},
number = {1},
pages = {77-90},
title = {The use of D-modules to study exponential polynomials},
url = {http://eudml.org/doc/262768},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Berenstein, C.
AU - Yger, A.
TI - The use of D-modules to study exponential polynomials
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 77
EP - 90
AB - This is a summary of recent work where we introduced a class of D-modules adapted to study ideals generated by exponential polynomials.
LA - eng
KW - division problem; -module; localizability of ideals; exponential polynomials; Paley-Wiener algebra; interpolation problem
UR - http://eudml.org/doc/262768
ER -

References

top
  1. [1] M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145-150. Zbl0188.19405
  2. [2] C. A. Berenstein, R. Gay and A. Yger, Analytic continuation of currents and division problems, Forum Math. 1 (1989), 15-51. Zbl0651.32005
  3. [3] C. A. Berenstein, R. Gay, A. Vidras and A. Yger, Residues and Bézout Identities, Progr. Math. 113, Birkhäuser, 1993. Zbl0802.32001
  4. [4] C. A. Berenstein and B. A. Taylor, Interpolation problems in n with applications to harmonic analysis, J. Analyse Math. 37 (1980), 188-254. Zbl0464.42003
  5. [5] C.A. Berenstein and B.A. Taylor, On the geometry of interpolating varieties, in: Séminaire Lelong-Skoda 1980-81, Springer, Heidelberg, 1-25. 
  6. [6] C. A. Berenstein, B. A. Taylor et A. Yger, Sur les systèmes d'équations différence-différentielles, Ann. Inst. Fourier (Grenoble) 33 (1983), 109-130. 
  7. [7] C. A. Berenstein and A. Yger, Ideals generated by exponential polynomials, Adv. in Math. 60 (1986), 1-80. 
  8. [8] C. A. Berenstein and A. Yger, On Łojasiewicz type inequalities for exponential polynomials, J. Math. Anal. Appl. 129 (1988), 166-195. 
  9. [9] C. A. Berenstein and A. Yger, Analytic Bézout identities, Adv. in Appl. Math. 10 (1989), 51-74. 
  10. [10] C. A. Berenstein and A. Yger, Effective Bézout estimates in [ z 1 , . . . , z n ] , Acta Math. 66 (1991), 69-120. 
  11. [11] C. A. Berenstein and A. Yger, Une formule de Jacobi et ses conséquences, Ann. Sci. École Norm. Sup. 24 (1991), 363-377. Zbl0742.32004
  12. [12] C. A. Berenstein and A. Yger, About Ehrenpreis' Fundamental Principle, in: Geometric and Algebraic Aspects in Several Complex Variables, C. A. Berenstein and D. C. Struppa (eds.), Editel, Rende, 1991, 47-61. 
  13. [13] C. A. Berenstein and A. Yger, Formules de représentation intégrale et problèmes de division, in: Diophantine Approximations and Transcendental Numbers, P. Philippon (ed.), Walter de Gruyter, Berlin, 1992, 15-37. Zbl0765.32002
  14. [14] C. A. Berenstein and A. Yger, D-modules and exponential polynomials, Compositio Math. (1995), to appear. 
  15. [15] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (1982), 91-110. Zbl0466.32001
  16. [16] I. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Functional Anal. Appl. 6 (1972), 273-285. Zbl0282.46038
  17. [17] J.-E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979. 
  18. [18] A. Borel, Operations on algebraic D-modules, in: Algebraic D-modules, A. Borel (ed.), Academic Press, Boston, 1987, 207-269. 
  19. [19] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley, 1970. Zbl0195.10401
  20. [20] D. I. Gurevich, Counterexamples to a problem of L. Schwartz, Functional Anal. Appl. 9 (1975), 116-120. Zbl0326.46020
  21. [21] L. Hörmander, The Analysis of Linear Partial Differential Operators, II, Springer, Berlin, 1983. Zbl0521.35002
  22. [22] M. Lejeune et B. Teissier, Quelques calculs utiles pour la résolution des singularités, Séminaire École Polytechnique, 1972, 130. 
  23. [23] B. Lichtin, Generalized Dirichlet series and B-functions, Compositio Math. 65 (1988), 81-120. 
  24. [24] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. 48 (1947), 857-929. Zbl0030.15004
  25. [25] C. Sabbah, Proximité évanescente II. Equations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 64 (1987), 213-241. Zbl0632.32006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.