On Bergman completeness of pseudoconvex Reinhardt domains
Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)
- Volume: 8, Issue: 3, page 537-552
- ISSN: 0240-2963
Access Full Article
topHow to cite
topZwonek, Włodzimierz. "On Bergman completeness of pseudoconvex Reinhardt domains." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.3 (1999): 537-552. <http://eudml.org/doc/73498>.
@article{Zwonek1999,
author = {Zwonek, Włodzimierz},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Bergman complete; bounded pseudoconvex Reinhardt domain},
language = {eng},
number = {3},
pages = {537-552},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On Bergman completeness of pseudoconvex Reinhardt domains},
url = {http://eudml.org/doc/73498},
volume = {8},
year = {1999},
}
TY - JOUR
AU - Zwonek, Włodzimierz
TI - On Bergman completeness of pseudoconvex Reinhardt domains
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 3
SP - 537
EP - 552
LA - eng
KW - Bergman complete; bounded pseudoconvex Reinhardt domain
UR - http://eudml.org/doc/73498
ER -
References
top- [Bło-Pfl] Błocki ( Z.) & Pflug ( P.). — Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225. Zbl0916.32016
- [Bre] Bremermann ( J.). — Holomorphic continuation of the kernel and the Bergman metric, in 'Lectures on functions of a complex variable', Univ. of Mich. Press (1955), 349-383. Zbl0067.30704MR74058
- [Car-Ceg-Wik] Carlehed ( M.), Cegrell ( U.) & Wikström ( F.). — Jensen Meauseres, Hyperconvexity and Boundary Behaviour of the Pluricomplex Green Function, Ann. Pol. Math., 71 (1999), 87-103. Zbl0955.32034
- [Chen] Chen ( B.-Y.). — Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Pol. Math., 71 (1999) 242-251. Zbl0937.32014MR1704301
- [Fu] Fu ( S.). — On completeness of invariant metrics of Reinhardt domains, Arch. Math.63 (1994), 166-172. Zbl0815.32001MR1289299
- [Har-Wri] Hardy ( G.H.) & Wright ( E.M.). - An Introduction to the Theory of Numbers, Oxford Science Publ., 1978.
- [Her] Herbort ( G.). — The Bergman metric on hyperconvex domains, Math. Z.232 (1) (1999), 183-196. Zbl0933.32048MR1714284
- [Hla-Sch-Tas] Hlawka ( E.), Schoissengeier ( J.) & Taschner ( R.). — Geometric and Analytic Number Theory, Springer-VerlagBerlinHeidelberg, 1991. Zbl0749.11001
- [Jak-Jar] Jakóbczak ( P.) & Jarnicki ( M.). — Lectures on Holomorphic Functions of Several Complex Variables (to appear).
- [Jar-Pfl] Jarnicki ( M.) & Pflug ( P.). - Bergman completeness of complete circular domains, Ann. Pol. Math.50 (1989), 219-222. Zbl0701.32002
- [Kob] Kobayashi ( S.). — On complete Bergman metrics, Proc. Amer. Math. Soc.13 (1962), 511-513. Zbl0114.04001MR141795
- [Ohs] Ohsawa ( T.). — A remark on the completeness of the Bergman metric, Proc. Jap. Acad.57 (1981), 238-240. Zbl0508.32008MR618233
- [Pfl 1] Pflug ( P.). — Quadratintegrable holomorphe Funktionen und die Serre Vermutung, Math. Ann.216 (1975), 285-288. Zbl0294.32009MR382717
- [Pfl 2] Pflug ( P.). — About the Carathéodory completeness of all Reinhardt domains, In: Functional Analysis, Holomorphy and Approximation TheoryII (1984), North-Holland, Amsterdam, 331-337, G. Zapata ed. Zbl0536.32001MR771335
- [Vla] Vladimirov ( V.). - Methods of the Theory of Several Complex Variables (russian), Moskau1964. English translation. Cambridge, Mass.-London, 1966. MR171937
- [Zwo 1] Zwonek ( W.). — On hyperbolicity of pseudoconvex Reinhardt domains, Arch. d. Math.72 (1999), 304-314. Zbl0938.32003MR1678013
- [Zwo 2] Zwonek ( W.). — On Carathéodory completeness of pseudoconvex Reinhardt domains, Proc. Amer. Math. Soc., 128, No. 3 (2000), 857-864. Zbl0939.32025MR1646214
- [Zwo 3] Zwonek ( W.). - Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math. (to appear). Zbl0965.32004MR1785672
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.