On Bergman completeness of pseudoconvex Reinhardt domains

Włodzimierz Zwonek

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 3, page 537-552
  • ISSN: 0240-2963

How to cite

top

Zwonek, Włodzimierz. "On Bergman completeness of pseudoconvex Reinhardt domains." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.3 (1999): 537-552. <http://eudml.org/doc/73498>.

@article{Zwonek1999,
author = {Zwonek, Włodzimierz},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Bergman complete; bounded pseudoconvex Reinhardt domain},
language = {eng},
number = {3},
pages = {537-552},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On Bergman completeness of pseudoconvex Reinhardt domains},
url = {http://eudml.org/doc/73498},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Zwonek, Włodzimierz
TI - On Bergman completeness of pseudoconvex Reinhardt domains
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 3
SP - 537
EP - 552
LA - eng
KW - Bergman complete; bounded pseudoconvex Reinhardt domain
UR - http://eudml.org/doc/73498
ER -

References

top
  1. [Bło-Pfl] Błocki ( Z.) & Pflug ( P.). — Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225. Zbl0916.32016
  2. [Bre] Bremermann ( J.). — Holomorphic continuation of the kernel and the Bergman metric, in 'Lectures on functions of a complex variable', Univ. of Mich. Press (1955), 349-383. Zbl0067.30704MR74058
  3. [Car-Ceg-Wik] Carlehed ( M.), Cegrell ( U.) & Wikström ( F.). — Jensen Meauseres, Hyperconvexity and Boundary Behaviour of the Pluricomplex Green Function, Ann. Pol. Math., 71 (1999), 87-103. Zbl0955.32034
  4. [Chen] Chen ( B.-Y.). — Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Pol. Math., 71 (1999) 242-251. Zbl0937.32014MR1704301
  5. [Fu] Fu ( S.). — On completeness of invariant metrics of Reinhardt domains, Arch. Math.63 (1994), 166-172. Zbl0815.32001MR1289299
  6. [Har-Wri] Hardy ( G.H.) & Wright ( E.M.). - An Introduction to the Theory of Numbers, Oxford Science Publ., 1978. 
  7. [Her] Herbort ( G.). — The Bergman metric on hyperconvex domains, Math. Z.232 (1) (1999), 183-196. Zbl0933.32048MR1714284
  8. [Hla-Sch-Tas] Hlawka ( E.), Schoissengeier ( J.) & Taschner ( R.). — Geometric and Analytic Number Theory, Springer-VerlagBerlinHeidelberg, 1991. Zbl0749.11001
  9. [Jak-Jar] Jakóbczak ( P.) & Jarnicki ( M.). — Lectures on Holomorphic Functions of Several Complex Variables (to appear). 
  10. [Jar-Pfl] Jarnicki ( M.) & Pflug ( P.). - Bergman completeness of complete circular domains, Ann. Pol. Math.50 (1989), 219-222. Zbl0701.32002
  11. [Kob] Kobayashi ( S.). — On complete Bergman metrics, Proc. Amer. Math. Soc.13 (1962), 511-513. Zbl0114.04001MR141795
  12. [Ohs] Ohsawa ( T.). — A remark on the completeness of the Bergman metric, Proc. Jap. Acad.57 (1981), 238-240. Zbl0508.32008MR618233
  13. [Pfl 1] Pflug ( P.). — Quadratintegrable holomorphe Funktionen und die Serre Vermutung, Math. Ann.216 (1975), 285-288. Zbl0294.32009MR382717
  14. [Pfl 2] Pflug ( P.). — About the Carathéodory completeness of all Reinhardt domains, In: Functional Analysis, Holomorphy and Approximation TheoryII (1984), North-Holland, Amsterdam, 331-337, G. Zapata ed. Zbl0536.32001MR771335
  15. [Vla] Vladimirov ( V.). - Methods of the Theory of Several Complex Variables (russian), Moskau1964. English translation. Cambridge, Mass.-London, 1966. MR171937
  16. [Zwo 1] Zwonek ( W.). — On hyperbolicity of pseudoconvex Reinhardt domains, Arch. d. Math.72 (1999), 304-314. Zbl0938.32003MR1678013
  17. [Zwo 2] Zwonek ( W.). — On Carathéodory completeness of pseudoconvex Reinhardt domains, Proc. Amer. Math. Soc., 128, No. 3 (2000), 857-864. Zbl0939.32025MR1646214
  18. [Zwo 3] Zwonek ( W.). - Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math. (to appear). Zbl0965.32004MR1785672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.