On symmetry of the pluricomplex Green function for ellipsoids

Włodzimierz Zwonek

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 2, page 121-129
  • ISSN: 0066-2216

Abstract

top
We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.

How to cite

top

Włodzimierz Zwonek. "On symmetry of the pluricomplex Green function for ellipsoids." Annales Polonici Mathematici 67.2 (1997): 121-129. <http://eudml.org/doc/270751>.

@article{WłodzimierzZwonek1997,
abstract = {We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.},
author = {Włodzimierz Zwonek},
journal = {Annales Polonici Mathematici},
keywords = {pluricomplex Green function; Lempert function; complex ellipsoid; $k̃_D$-geodesic; plurisubharmonic functions; holomorphic functions; complex ellipsoids},
language = {eng},
number = {2},
pages = {121-129},
title = {On symmetry of the pluricomplex Green function for ellipsoids},
url = {http://eudml.org/doc/270751},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Włodzimierz Zwonek
TI - On symmetry of the pluricomplex Green function for ellipsoids
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 2
SP - 121
EP - 129
AB - We show that in the class of complex ellipsoids the symmetry of the pluricomplex Green function is equivalent to convexity of the ellipsoid.
LA - eng
KW - pluricomplex Green function; Lempert function; complex ellipsoid; $k̃_D$-geodesic; plurisubharmonic functions; holomorphic functions; complex ellipsoids
UR - http://eudml.org/doc/270751
ER -

References

top
  1. [Bed-Dem] E. Bedford and J.-P. Demailly, Two counterexamples concerning the pluri-complex Green function in ℂⁿ, Indiana Univ. Math. J. 37 (1988), 865-867. 
  2. [Edi] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. Zbl0851.32025
  3. [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter 1993. 
  4. [Jar-Pfl-Zei] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. Zbl0812.32010
  5. [Kli] M. Klimek, Pluripotential Theory, Oxford University Press, 1991. 
  6. [Lem1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. 
  7. [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables Theory Appl. 29 (1996), 59-71. Zbl0843.32015
  8. [Pol] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. Zbl0811.32010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.