On invariant domains of holomorphy

A. Sergeev

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 349-357
  • ISSN: 0137-6934

How to cite

top

Sergeev, A.. "On invariant domains of holomorphy." Banach Center Publications 31.1 (1995): 349-357. <http://eudml.org/doc/262779>.

@article{Sergeev1995,
author = {Sergeev, A.},
journal = {Banach Center Publications},
keywords = {complexification; orbit connectedness; orbit convexity; extended future tube; matrix Reinhardt domains; Lie group; domains of holomorphy},
language = {eng},
number = {1},
pages = {349-357},
title = {On invariant domains of holomorphy},
url = {http://eudml.org/doc/262779},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Sergeev, A.
TI - On invariant domains of holomorphy
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 349
EP - 357
LA - eng
KW - complexification; orbit connectedness; orbit convexity; extended future tube; matrix Reinhardt domains; Lie group; domains of holomorphy
UR - http://eudml.org/doc/262779
ER -

References

top
  1. [1] Bedford E. and Dadok J., Generalized Reinhardt domains, J. Geom. Anal. 1 (1991), 1-17 
  2. [2] Cœuré G. and Loeb J. J., Univalence de certaines envelopes d'holomorphie, C. R. Acad. Sci. Paris Sér. I 302 (1986), 59-61 
  3. [3] Fels G., Holomorphiehüllen der Reinhardtschen Gebiete sowie U n ( ) × U n ( ) invarianten Matrizengebiete, Ruhr-Universität preprint, Bochum, 1990. 
  4. [4] Heinzner P., Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662 Zbl0728.32010
  5. [5] Heinzner P. and Sergeev A. G., The extended matrix disc is a domain of holomorphy, Math. USSR-Izv. 38 (1992), 637-645 Zbl0788.32006
  6. [6] Hochschild G., The Structure of Lie Groups, Holden-Day, San Francisco, 1965. Zbl0131.02702
  7. [7] Jost R., The General Theory of Quantized Fields, Amer. Math. Soc., Providence, R.I., 1965. Zbl0127.19105
  8. [8] Lasalle M., Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact, Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 167-210 Zbl0452.43011
  9. [9] Loeb J. J., Plurisousharmonicité et convexité sur les groupes réductifs complexes, Publ. IRMA Lille 2 (8) (1986). 
  10. [10] Pflug P., Über polynomiale Funktionen auf Holomorphiegebieten, Math. Z. 139 (1974), 133-139 
  11. [11] Rothaus O., Envelopes of holomorphy of domains in complex Lie groups, in: Problems of Analysis, Princeton Univ. Press, Princeton, 1970, 309-317 
  12. [12] Sergeev A. G., On matrix Reinhardt and circled domains, in: Several Complex Variables. Proc. Mittag-Leffler Inst., Princeton Univ. Press, Princeton, 1993, 573-586 Zbl0778.32002
  13. [13] Sibony N., Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Invent. Math. 29 (1975), 205-230 Zbl0333.32011
  14. [14] Vladimirov V. S., Several complex variables in mathematical physics, in: Lecture Notes in Math. 919, Springer, Berlin, 1982, 358-386 
  15. [15] X. Zhou, On matrix Reinhardt domains, Math. Ann. 287 (1990), 35-46 Zbl0672.32003
  16. [16] X. Zhou, On orbit connectedness, orbit convexity, and envelopes of holomorphy, Math. USSR-Izv., to appear. Zbl0835.32006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.