Geometric invariant theory on Stein spaces.
Mathematische Annalen (1991)
- Volume: 289, Issue: 4, page 631-662
- ISSN: 0025-5831; 1432-1807/e
Access Full Article
topHow to cite
topHeinzner, Peter. "Geometric invariant theory on Stein spaces.." Mathematische Annalen 289.4 (1991): 631-662. <http://eudml.org/doc/164803>.
@article{Heinzner1991,
author = {Heinzner, Peter},
journal = {Mathematische Annalen},
keywords = {compact Lie group; complexification; Stein space; equivariant holomorphic map},
number = {4},
pages = {631-662},
title = {Geometric invariant theory on Stein spaces.},
url = {http://eudml.org/doc/164803},
volume = {289},
year = {1991},
}
TY - JOUR
AU - Heinzner, Peter
TI - Geometric invariant theory on Stein spaces.
JO - Mathematische Annalen
PY - 1991
VL - 289
IS - 4
SP - 631
EP - 662
KW - compact Lie group; complexification; Stein space; equivariant holomorphic map
UR - http://eudml.org/doc/164803
ER -
Citations in EuDML Documents
top- Christian Miebach, Sur les quotients discrets de semi-groupes complexes
- A. Huckleberry, H. Sebert, Asymptotics of eigensections on toric varieties
- A. Sergeev, On invariant domains of holomorphy
- Gregor Fels, A differential geometric characterization of invariant domains of holomorphy
- Peter Heinzner, Patrick Schützdeller, The extended future tube conjecture for SO(1, )
- Bernd Stratmann, Complexification of proper hamiltonian -spaces
- Laurent Bruasse, Andrei Teleman, Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry
- Peter Heinzner, Equivariant holomorphic extensions of real analytic manifolds
- Peter Heinzner, Luca Migliorini, Marzia Polito, Semistable quotients
- Xiang-Yu Zhou, On invariant domains in certain complex homogeneous spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.