The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle

Dariusz Partyka

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 303-310
  • ISSN: 0137-6934

Abstract

top
This paper provides sufficient conditions on a quasisymmetric automorphism γ of the unit circle which guarantee the existence of the smallest positive eigenvalue of γ. They are expressed by means of a regular quasiconformal Teichmüller self-mapping φ of the unit disc Δ. In particular, the norm of the generalized harmonic conjugation operator A γ : is determined by the maximal dilatation of φ. A characterization of all eigenvalues of a quasisymmetric automorphism γ in terms of the smallest positive eigenvalue of some other quasisymmetric automorphism σ is given.

How to cite

top

Partyka, Dariusz. "The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle." Banach Center Publications 31.1 (1995): 303-310. <http://eudml.org/doc/262865>.

@article{Partyka1995,
abstract = {This paper provides sufficient conditions on a quasisymmetric automorphism γ of the unit circle which guarantee the existence of the smallest positive eigenvalue of γ. They are expressed by means of a regular quasiconformal Teichmüller self-mapping φ of the unit disc Δ. In particular, the norm of the generalized harmonic conjugation operator $A_γ:ℍ → ℍ$ is determined by the maximal dilatation of φ. A characterization of all eigenvalues of a quasisymmetric automorphism γ in terms of the smallest positive eigenvalue of some other quasisymmetric automorphism σ is given.},
author = {Partyka, Dariusz},
journal = {Banach Center Publications},
keywords = {quasisymmetric automorphisms; harmonic conjugation operator; quasiconformal mappings; eigenvalues and spectral values of a linear operator; Teichmüller mappings; quasisymmetric automorphism; Teichmüller mapping},
language = {eng},
number = {1},
pages = {303-310},
title = {The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle},
url = {http://eudml.org/doc/262865},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Partyka, Dariusz
TI - The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 303
EP - 310
AB - This paper provides sufficient conditions on a quasisymmetric automorphism γ of the unit circle which guarantee the existence of the smallest positive eigenvalue of γ. They are expressed by means of a regular quasiconformal Teichmüller self-mapping φ of the unit disc Δ. In particular, the norm of the generalized harmonic conjugation operator $A_γ:ℍ → ℍ$ is determined by the maximal dilatation of φ. A characterization of all eigenvalues of a quasisymmetric automorphism γ in terms of the smallest positive eigenvalue of some other quasisymmetric automorphism σ is given.
LA - eng
KW - quasisymmetric automorphisms; harmonic conjugation operator; quasiconformal mappings; eigenvalues and spectral values of a linear operator; Teichmüller mappings; quasisymmetric automorphism; Teichmüller mapping
UR - http://eudml.org/doc/262865
ER -

References

top
  1. [A] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966. 
  2. [BS] S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1951), 205-249. Zbl0043.08403
  3. [B1] B. Bojarski, Homeomorphic solution of Beltrami systems, Dokl. Akad. Nauk SSSR 102 (1955), 661-664 (in Russian). 
  4. [B2] B. Bojarski, Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients, Mat. Sb. N.S. 43 (1957), 451-503 (in Russian). 
  5. [G] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
  6. [K] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. Zbl0563.30016
  7. [KP] J. G. Krzyż and D. Partyka, Generalized Neumann-Poincaré operator, chord-arc curves and Fredholm eigenvalues, Complex Variables, Theory Appl. 21 (1993), 253-263. Zbl0793.30031
  8. [Kü] R. Kühnau, Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307. Zbl0605.30023
  9. [L] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109 Springer, New York, 1987. Zbl0606.30001
  10. [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973. Zbl0267.30016
  11. [Ł] K] J. Ławrynowicz and J. G. Krzyż, Quasiconformal Mappings in the Plane: Parametrical Methods, Lecture Notes in Math. 978, Springer, Berlin, 1983. 
  12. [P1] D. Partyka, Spectral values of a quasicircle, Complex Variables Theory Appl., to appear. Zbl0708.30022
  13. [P2] D. Partyka, Generalized harmonic conjugation operator, Proceedings of the Fourth Finnish-Polish Summer School in Complex Analysis at Jyväskylä, Ber. Univ. Jyväskylä Math. Inst. 55 (1993), 143-155. 
  14. [P3] D. Partyka, Spectral values and eigenvalues of a quasicircle, preprint. Zbl0826.30014
  15. [S] M. Schiffer, The Fredholm eigenvalues of plane domains, Pacific J. Math. 7 (1957), 1187-1225. Zbl0138.30003
  16. [St1] K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises I, Comment. Math. Helv. 36 (1962), 306-323. 
  17. [St2] K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises II, ibid. 39 (1964), 77-89. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.