On a modification of the Poisson integral operator
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2011)
- Volume: 65, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topDariusz Partyka. "On a modification of the Poisson integral operator." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 65.2 (2011): null. <http://eudml.org/doc/289763>.
@article{DariuszPartyka2011,
abstract = {Given a quasisymmetric automorphism $\gamma $ of the unit circle $\mathbb \{T\}$ we define and study a modification $P_\{\gamma \}$ of the classical Poisson integral operator in the case of the unit disk $\mathbb \{D\}$. The modification is done by means of the generalized Fourier coefficients of $\gamma $. For a Lebesgue’s integrable complexvalued function $f$ on $\mathbb \{T\}$, $P_\{\gamma \}[f]$ is a complex-valued harmonic function in $\mathbb \{D\}$ and it coincides with the classical Poisson integral of $f$ provided $\gamma $ is the identity mapping on $\mathbb \{T\}$. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator $P_\{\gamma \}$, the maximal dilatation of a regular quasiconformal Teichmuller extension of $\gamma $ to $\mathbb \{D\}$ and the smallest positive eigenvalue of $\gamma $.},
author = {Dariusz Partyka},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Dirichlet integral; eigenvalue of a Jordan curve; eigenvalue of a quasisymmetric automorphism; extremal quasiconformal mapping; Fourier coefficient; harmonic conjugation operator; harmonic function; Neumann-Poincare kernel; Poisson integral},
language = {eng},
number = {2},
pages = {null},
title = {On a modification of the Poisson integral operator},
url = {http://eudml.org/doc/289763},
volume = {65},
year = {2011},
}
TY - JOUR
AU - Dariusz Partyka
TI - On a modification of the Poisson integral operator
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2011
VL - 65
IS - 2
SP - null
AB - Given a quasisymmetric automorphism $\gamma $ of the unit circle $\mathbb {T}$ we define and study a modification $P_{\gamma }$ of the classical Poisson integral operator in the case of the unit disk $\mathbb {D}$. The modification is done by means of the generalized Fourier coefficients of $\gamma $. For a Lebesgue’s integrable complexvalued function $f$ on $\mathbb {T}$, $P_{\gamma }[f]$ is a complex-valued harmonic function in $\mathbb {D}$ and it coincides with the classical Poisson integral of $f$ provided $\gamma $ is the identity mapping on $\mathbb {T}$. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator $P_{\gamma }$, the maximal dilatation of a regular quasiconformal Teichmuller extension of $\gamma $ to $\mathbb {D}$ and the smallest positive eigenvalue of $\gamma $.
LA - eng
KW - Dirichlet integral; eigenvalue of a Jordan curve; eigenvalue of a quasisymmetric automorphism; extremal quasiconformal mapping; Fourier coefficient; harmonic conjugation operator; harmonic function; Neumann-Poincare kernel; Poisson integral
UR - http://eudml.org/doc/289763
ER -
References
top- Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
- Duren, P., Theory of -Spaces, Dover Publications, Inc., Mineola, New York, 2000.
- Gaier, D., Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin, 1964.
- Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.
- Kellogg, O. D., Foundations of Potential Theory, Dover Publications, Inc., New York, 1953.
- Krushkal, S. L., On the Grunsky coefficient conditions, Siberian Math. J. 28 (1987), 104-110.
- Krushkal, S. L., Grunsky coefficient inequalities, Carath´eodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650-660.
- Krushkal, S. L., Univalent holomorphic functions with quasiconformal extensions (variational approach), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. K¨uhnau), Elsevier B.V., 2005, pp. 165-241.
- Krushkal, S. L., Quasiconformal Extensions and Reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. K¨uhnau), Elsevier B.V.,
- 2005, pp. 507-553.
- Krzyż, J. G., Conjugate holomorphic eigenfunctions and extremal quasiconformal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 305-311.
- Krzyż, J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46 (1985), 157-163.
- Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24.
- Krzyż, J. G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 90-95.
- Krzyż, J. G., Partyka, D., Generalized Neumann-Poincar´e operator, chord-arc curves and Fredholm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253-263.
- Kuhnau, R., Zu den Grunskyschen Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 125-130.
- Kuhnau, R., Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerten und Grunskysche Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391.
- Kuhnau, R., Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend fur Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307.
- Kuhnau, R., Koeffizientenbedingungen vom Grunskyschen Typ und Fredholmsche Eigenwerte, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 79-87.
- Kuhnau, R., A new matrix characterization of Fredholm eigenvalues of quasicircles, J. Anal. Math. 99 (2006), 295-307.
- Kuhnau, R., New characterizations of Fredholm eigenvalues of quasicircles, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 683-688.
- Partyka, D., Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Skłodowska Sec. A 46 (1993), 81-98.
- Partyka, D., The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle, Topics in Complex Analysis (Warsaw, 1992), Banach Center Publ.,
- 31, Polish Acad. Sci., Warsaw, 1995, pp. 303-310.
- Partyka, D., Some extremal problems concerning the operator , Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 163-184.
- Partyka, D., The generalized Neumann-Poincare operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp.
- Partyka, D., Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 52 (1998), 121-135.
- Partyka, D., The Grunsky type inequalities for quasisymmetric automorphisms of the unit circle, Bull. Soc. Sci. Lett. Łódź Ser. Rech. Deform. 31 (2000), 135-142.
- Partyka, D., Sakan, K., A conformally invariant dilatation of quasisymmetry, Ann. Univ. Mariae Curie-Skłodowska Sec. A 53 (1999), 167-181.
- Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.
- Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164.
- Schober, G., Numerische, insbesondere approximationstheoretische behandlung von
- funktionalgleichungen, Estimates for Fredholm Eigenvalues Based on Quasiconformal Mapping, Lecture Notes in Math. 333, Springer-Verlag, Berlin, 1973, pp. 211-217.
- Shen, Y., Generalized Fourier coefficients of a quasi-symmetric homeomorphism and Fredholm eigenvalue, J. Anal. Math. 112 (2010), no. 1, 33-48.
- Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.
- Zając, J., Quasihomographies in the theory of Teichmuller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.