On a modification of the Poisson integral operator
Annales UMCS, Mathematica (2011)
- Volume: 65, Issue: 2, page 121-137
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topDariusz Partyka. "On a modification of the Poisson integral operator." Annales UMCS, Mathematica 65.2 (2011): 121-137. <http://eudml.org/doc/267964>.
@article{DariuszPartyka2011,
abstract = {Given a quasisymmetric automorphism γ of the unit circle T we define and study a modification Pγ of the classical Poisson integral operator in the case of the unit disk D. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue's integrable complex-valued function f on T, Pγ[f] is a complex-valued harmonic function in D and it coincides with the classical Poisson integral of f provided γ is the identity mapping on T. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator Pγ, the maximal dilatation of a regular quasiconformal Teichmüller extension of γ to D and the smallest positive eigenvalue of γ.},
author = {Dariusz Partyka},
journal = {Annales UMCS, Mathematica},
keywords = {Dirichlet integral; eigenvalue of a Jordan curve; eigenvalue of a quasisymmetric automorphism; extremal quasiconformal mapping; Fourier coefficient; harmonic conjugation operator; harmonic function; Neumann-Poincaré kernel; Poisson integral; quasiconformal mapping; quasisymmetric automorphism; Teichmüller mapping; welding homeomorphism; quasisymmetric homeomorphism},
language = {eng},
number = {2},
pages = {121-137},
title = {On a modification of the Poisson integral operator},
url = {http://eudml.org/doc/267964},
volume = {65},
year = {2011},
}
TY - JOUR
AU - Dariusz Partyka
TI - On a modification of the Poisson integral operator
JO - Annales UMCS, Mathematica
PY - 2011
VL - 65
IS - 2
SP - 121
EP - 137
AB - Given a quasisymmetric automorphism γ of the unit circle T we define and study a modification Pγ of the classical Poisson integral operator in the case of the unit disk D. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue's integrable complex-valued function f on T, Pγ[f] is a complex-valued harmonic function in D and it coincides with the classical Poisson integral of f provided γ is the identity mapping on T. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator Pγ, the maximal dilatation of a regular quasiconformal Teichmüller extension of γ to D and the smallest positive eigenvalue of γ.
LA - eng
KW - Dirichlet integral; eigenvalue of a Jordan curve; eigenvalue of a quasisymmetric automorphism; extremal quasiconformal mapping; Fourier coefficient; harmonic conjugation operator; harmonic function; Neumann-Poincaré kernel; Poisson integral; quasiconformal mapping; quasisymmetric automorphism; Teichmüller mapping; welding homeomorphism; quasisymmetric homeomorphism
UR - http://eudml.org/doc/267964
ER -
References
top- Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. Zbl0072.29602
- Duren, P., Theory of Hp-Spaces, Dover Publications, Inc., Mineola, New York, 2000.
- Gaier, D., Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin, 1964. Zbl0132.36702
- Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
- Kellogg, O. D., Foundations of Potential Theory, Dover Publications, Inc., New York, 1953. Zbl0053.07301
- Krushkal, S. L., On the Grunsky coefficient conditions, Siberian Math. J. 28 (1987), 104-110. Zbl0624.30020
- Krushkal, S. L., Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650-660. Zbl0697.30016
- Krushkal, S. L., Univalent holomorphic functions with quasiconformal extensions (variational approach), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. Kühnau), Elsevier B.V., 2005, pp. 165-241. Zbl1075.30015
- Krushkal, S. L., Quasiconformal Extensions and Reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. Kühnau), Elsevier B.V., 2005, pp. 507-553. Zbl1075.30010
- Krzyż, J. G., Conjugate holomorphic eigenfunctions and extremal quasiconformal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 305-311. Zbl0596.30030
- Krzyż, J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46 (1985), 157-163. Zbl0593.30013
- Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. Zbl0563.30016
- Krzyż, J. G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 90-95.
- Krzyż, J. G., Partyka, D., Generalized Neumann-Poincaré operator, chord-arc curves and Fredholm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253-263. Zbl0793.30031
- Kühnau, R., Zu den Grunskyschen Coeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 125-130. Zbl0454.30016
- Kühnau, R., Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerten und Grunskysche Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391.
- Kühnau, R., Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307. Zbl0605.30023
- Kühnau, R., Koeffizientenbedingungen vom Grunskyschen Typ und Fredholmsche Eigenwerte, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 79-87.
- Kühnau, R., A new matrix characterization of Fredholm eigenvalues of quasicircles, J. Anal. Math. 99 (2006), 295-307. Zbl1134.30011
- Kühnau, R., New characterizations of Fredholm eigenvalues of quasicircles, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 683-688. Zbl1199.30124
- Partyka, D., Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Skłodowska Sec. A 46 (1993), 81-98.
- Partyka, D., The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle, Topics in Complex Analysis (Warsaw, 1992), Banach Center Publ., 31, Polish Acad. Sci., Warsaw, 1995, pp. 303-310. Zbl0833.30012
- Partyka, D., Some extremal problems concerning the operator Bγ, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 163-184.
- Partyka, D., The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp. Zbl0885.30014
- Partyka, D., Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 52 (1998), 121-135. Zbl1009.30014
- Partyka, D., The Grunsky type inequalities for quasisymmetric automorphisms of the unit circle, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 31 (2000), 135-142. Zbl1088.30507
- Partyka, D., Sakan, K., A conformally invariant dilatation of quasisymmetry, Ann. Univ. Mariae Curie-Skłodowska Sec. A 53 (1999), 167-181. Zbl0993.30013
- Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164.
- Schober, G., Numerische, insbesondere approximationstheoretische behandlung von funktionalgleichungen, Estimates for Fredholm Eigenvalues Based on Quasiconformal Mapping, Lecture Notes in Math. 333, Springer-Verlag, Berlin, 1973, pp. 211-217.
- Shen, Y., Generalized Fourier coefficients of a quasi-symmetric homeomorphism and Fredholm eigenvalue, J. Anal. Math. 112 (2010), no. 1, 33-48. Zbl1215.30004
- Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.[Crossref] Zbl0100.28803
- Zając, J., Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp. Zbl0877.30021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.