On a modification of the Poisson integral operator

Dariusz Partyka

Annales UMCS, Mathematica (2011)

  • Volume: 65, Issue: 2, page 121-137
  • ISSN: 2083-7402

Abstract

top
Given a quasisymmetric automorphism γ of the unit circle T we define and study a modification Pγ of the classical Poisson integral operator in the case of the unit disk D. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue's integrable complex-valued function f on T, Pγ[f] is a complex-valued harmonic function in D and it coincides with the classical Poisson integral of f provided γ is the identity mapping on T. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator Pγ, the maximal dilatation of a regular quasiconformal Teichmüller extension of γ to D and the smallest positive eigenvalue of γ.

How to cite

top

Dariusz Partyka. "On a modification of the Poisson integral operator." Annales UMCS, Mathematica 65.2 (2011): 121-137. <http://eudml.org/doc/267964>.

@article{DariuszPartyka2011,
abstract = {Given a quasisymmetric automorphism γ of the unit circle T we define and study a modification Pγ of the classical Poisson integral operator in the case of the unit disk D. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue's integrable complex-valued function f on T, Pγ[f] is a complex-valued harmonic function in D and it coincides with the classical Poisson integral of f provided γ is the identity mapping on T. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator Pγ, the maximal dilatation of a regular quasiconformal Teichmüller extension of γ to D and the smallest positive eigenvalue of γ.},
author = {Dariusz Partyka},
journal = {Annales UMCS, Mathematica},
keywords = {Dirichlet integral; eigenvalue of a Jordan curve; eigenvalue of a quasisymmetric automorphism; extremal quasiconformal mapping; Fourier coefficient; harmonic conjugation operator; harmonic function; Neumann-Poincaré kernel; Poisson integral; quasiconformal mapping; quasisymmetric automorphism; Teichmüller mapping; welding homeomorphism; quasisymmetric homeomorphism},
language = {eng},
number = {2},
pages = {121-137},
title = {On a modification of the Poisson integral operator},
url = {http://eudml.org/doc/267964},
volume = {65},
year = {2011},
}

TY - JOUR
AU - Dariusz Partyka
TI - On a modification of the Poisson integral operator
JO - Annales UMCS, Mathematica
PY - 2011
VL - 65
IS - 2
SP - 121
EP - 137
AB - Given a quasisymmetric automorphism γ of the unit circle T we define and study a modification Pγ of the classical Poisson integral operator in the case of the unit disk D. The modification is done by means of the generalized Fourier coefficients of γ. For a Lebesgue's integrable complex-valued function f on T, Pγ[f] is a complex-valued harmonic function in D and it coincides with the classical Poisson integral of f provided γ is the identity mapping on T. Our considerations are motivated by the problem of spectral values and eigenvalues of a Jordan curve. As an application we establish a relationship between the operator Pγ, the maximal dilatation of a regular quasiconformal Teichmüller extension of γ to D and the smallest positive eigenvalue of γ.
LA - eng
KW - Dirichlet integral; eigenvalue of a Jordan curve; eigenvalue of a quasisymmetric automorphism; extremal quasiconformal mapping; Fourier coefficient; harmonic conjugation operator; harmonic function; Neumann-Poincaré kernel; Poisson integral; quasiconformal mapping; quasisymmetric automorphism; Teichmüller mapping; welding homeomorphism; quasisymmetric homeomorphism
UR - http://eudml.org/doc/267964
ER -

References

top
  1. Beurling, A., Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. Zbl0072.29602
  2. Duren, P., Theory of Hp-Spaces, Dover Publications, Inc., Mineola, New York, 2000. 
  3. Gaier, D., Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin, 1964. Zbl0132.36702
  4. Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
  5. Kellogg, O. D., Foundations of Potential Theory, Dover Publications, Inc., New York, 1953. Zbl0053.07301
  6. Krushkal, S. L., On the Grunsky coefficient conditions, Siberian Math. J. 28 (1987), 104-110. Zbl0624.30020
  7. Krushkal, S. L., Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650-660. Zbl0697.30016
  8. Krushkal, S. L., Univalent holomorphic functions with quasiconformal extensions (variational approach), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. Kühnau), Elsevier B.V., 2005, pp. 165-241. Zbl1075.30015
  9. Krushkal, S. L., Quasiconformal Extensions and Reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2 (ed. by R. Kühnau), Elsevier B.V., 2005, pp. 507-553. Zbl1075.30010
  10. Krzyż, J. G., Conjugate holomorphic eigenfunctions and extremal quasiconformal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 305-311. Zbl0596.30030
  11. Krzyż, J. G., Generalized Fredholm eigenvalues of a Jordan curve, Ann. Polon. Math. 46 (1985), 157-163. Zbl0593.30013
  12. Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 19-24. Zbl0563.30016
  13. Krzyż, J. G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 90-95. 
  14. Krzyż, J. G., Partyka, D., Generalized Neumann-Poincaré operator, chord-arc curves and Fredholm eigenvalues, Complex Variables Theory Appl. 21 (1993), 253-263. Zbl0793.30031
  15. Kühnau, R., Zu den Grunskyschen Coeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 125-130. Zbl0454.30016
  16. Kühnau, R., Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerten und Grunskysche Koeffizientenbedingungen, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 383-391. 
  17. Kühnau, R., Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?, Comment. Math. Helv. 61 (1986), 290-307. Zbl0605.30023
  18. Kühnau, R., Koeffizientenbedingungen vom Grunskyschen Typ und Fredholmsche Eigenwerte, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 79-87. 
  19. Kühnau, R., A new matrix characterization of Fredholm eigenvalues of quasicircles, J. Anal. Math. 99 (2006), 295-307. Zbl1134.30011
  20. Kühnau, R., New characterizations of Fredholm eigenvalues of quasicircles, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 683-688. Zbl1199.30124
  21. Partyka, D., Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-Skłodowska Sec. A 46 (1993), 81-98. 
  22. Partyka, D., The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle, Topics in Complex Analysis (Warsaw, 1992), Banach Center Publ., 31, Polish Acad. Sci., Warsaw, 1995, pp. 303-310. Zbl0833.30012
  23. Partyka, D., Some extremal problems concerning the operator Bγ, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 163-184. 
  24. Partyka, D., The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp. Zbl0885.30014
  25. Partyka, D., Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 52 (1998), 121-135. Zbl1009.30014
  26. Partyka, D., The Grunsky type inequalities for quasisymmetric automorphisms of the unit circle, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 31 (2000), 135-142. Zbl1088.30507
  27. Partyka, D., Sakan, K., A conformally invariant dilatation of quasisymmetry, Ann. Univ. Mariae Curie-Skłodowska Sec. A 53 (1999), 167-181. Zbl0993.30013
  28. Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. 
  29. Schiffer, M., Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164. 
  30. Schober, G., Numerische, insbesondere approximationstheoretische behandlung von funktionalgleichungen, Estimates for Fredholm Eigenvalues Based on Quasiconformal Mapping, Lecture Notes in Math. 333, Springer-Verlag, Berlin, 1973, pp. 211-217. 
  31. Shen, Y., Generalized Fourier coefficients of a quasi-symmetric homeomorphism and Fredholm eigenvalue, J. Anal. Math. 112 (2010), no. 1, 33-48. Zbl1215.30004
  32. Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.[Crossref] Zbl0100.28803
  33. Zając, J., Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. (Rozprawy Mat.) 357 (1996), 102 pp. Zbl0877.30021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.