Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
Zoltán M. Balogh; Jeremy T. Tyson; Kevin Wildrick
Analysis and Geometry in Metric Spaces (2013)
- Volume: 1, page 232-254
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topZoltán M. Balogh, Jeremy T. Tyson, and Kevin Wildrick. "Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces." Analysis and Geometry in Metric Spaces 1 (2013): 232-254. <http://eudml.org/doc/266674>.
@article{ZoltánM2013,
abstract = {We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.},
author = {Zoltán M. Balogh, Jeremy T. Tyson, Kevin Wildrick},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Sobolev mapping; Ahlfors regularity; Poincaré inequality; foliation; David–Semmes regular mapping; David-Semmes regular mapping},
language = {eng},
pages = {232-254},
title = {Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces},
url = {http://eudml.org/doc/266674},
volume = {1},
year = {2013},
}
TY - JOUR
AU - Zoltán M. Balogh
AU - Jeremy T. Tyson
AU - Kevin Wildrick
TI - Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
JO - Analysis and Geometry in Metric Spaces
PY - 2013
VL - 1
SP - 232
EP - 254
AB - We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
LA - eng
KW - Sobolev mapping; Ahlfors regularity; Poincaré inequality; foliation; David–Semmes regular mapping; David-Semmes regular mapping
UR - http://eudml.org/doc/266674
ER -
References
top- [1] Arcozzi, N., and Baldi, A. From Grushin to Heisenberg via an isoperimetric problem. J. Math. Anal. Appl. 340, 1 (2008), 165–174. [WoS] Zbl1134.53016
- [2] Aronszajn, N. Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57, 2 (1976), 147–190. [WoS] Zbl0342.46034
- [3] Astala, K. Area distortion of quasiconformal mappings. Acta Math. 173, 1 (1994), 37–60. Zbl0815.30015
- [4] Balogh, Z. M., Fässler, K., Mattila, P., and Tyson, J. T. Projection and slicing theorems in Heisenberg groups. Adv. Math. 231, 2 (2012), 569–604. [WoS] Zbl1260.28007
- [5] Balogh, Z. M., Monti, R., and Tyson, J. T. Frequency of Sobolev and quasiconformal dimension distortion. J. Math. Pures Appl. (9) 99, 2 (2013), 125–149. [WoS] Zbl1266.28003
- [6] Balogh, Z. M., Tyson, J. T., and Warhurst, B. Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry in Carnot groups. Adv. Math. 220 (2009), 560–619. [WoS] Zbl1155.22011
- [7] Balogh, Z. M., Tyson, J. T., and Wildrick, K. Frequency of Sobolev dimension distortion of horizontal subgroups of Heisenberg groups. (preprint, arXiv:1303.7094 [math.MG]).
- [8] Bellaïche, A. The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry, vol. 144 of Progr. Math. Birkhäuser, Basel, 1996, pp. 1–78. Zbl0862.53031
- [9] Bishop, C., and Hakobyan, H. Frequency of dimension distortion under quasisymmetric mappings. (preprint, 2012).
- [10] Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 3 (1999), 428–517. [Crossref] Zbl0942.58018
- [11] Christensen, J. P. R. Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings. Publ. Dép. Math. (Lyon) 10, 2 (1973), 29–39. Actes du Deuxième Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29–39. Zbl0302.43001
- [12] Csörnyei, M. Aronszajn null and Gaussian null sets coincide. Israel J. Math. 111 (1999), 191–201. Zbl0952.46030
- [13] David, G., and Semmes, S. Regular mappings between dimensions. Publ. Mat. 44, 2 (2000), 369–417. [Crossref] Zbl1041.42010
- [14] Gehring, F. W. The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265–277. Zbl0258.30021
- [15] Gehring, F. W., and Väisälä, J. Hausdorff dimension and quasiconformal mappings. J. London Math. Soc. (2) 6 (1973), 504–512. Zbl0258.30020
- [16] Hajłasz, P., and Koskela, P. Sobolev met Poincaré. Mem. Amer. Math. Soc. 145, 688 (2000), x+101. Zbl0954.46022
- [17] Heinonen, J. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. Zbl0985.46008
- [18] Heinonen, J., and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1 (1998), 1–61. Zbl0915.30018
- [19] Heinonen, J., Koskela, P., Shanmugalingam, N., and Tyson, J. T. Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85 (2001), 87–139. Zbl1013.46023
- [20] Hencl, S., and Honzík, P. Dimension of images of subspaces under Sobolev mappings. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 3 (2012), 401–411. Zbl1245.28006
- [21] Hunt, B. R., and Kaloshin, V. Y. How projections affect the dimension spectrum of fractal measures. Nonlinearity 10, 5 (1997), 1031–1046. [Crossref] Zbl0903.28008
- [22] Hunt, B. R., Sauer, T. D., and Yorke, J. A. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27, 2 (1992), 217–238. [Crossref] Zbl0763.28009
- [23] Kaufman, R. P. Sobolev spaces, dimension, and random series. Proc. Amer. Math. Soc. 128, 2 (2000), 427–431. Zbl0938.28001
- [24] Mackay, J. M., Tyson, J. T., and Wildrick, K. Modulus and Poincaré inequalities on non-self-similar Sierpinski carpets. Geom. Funct. Anal. 23, 3 (2013), 985-1034 [WoS][Crossref] Zbl1271.30032
- [25] Mattila, P. Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Zbl0819.28004
- [26] Ott, W., and Yorke, J. A. Prevalence. Bull. Amer. Math. Soc. (N.S.) 42, 3 (2005), 263–290 (electronic). [Crossref]
- [27] Rothschild, L. P., and Stein, E. M. Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 3-4 (1976), 247–320. Zbl0346.35030
- [28] Sauer, T. D., and Yorke, J. A. Are the dimensions of a set and its image equal under typical smooth functions? Ergodic Theory Dynam. Systems 17, 4 (1997), 941–956. Zbl0884.28006
- [29] Seo, J. A characterization of bi-Lipschitz embeddable metric spaces in terms of local bi-Lipschitz embeddability. Math. Res. Lett. 18, 6 (2011), 1179–1202. [Crossref] Zbl1273.30054
- [30] Shanmugalingam, N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 2 (2000), 243–279. [Crossref] Zbl0974.46038
- [31] Ziemer, W. P. Weakly differentiable functions, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.