Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
Zoltán M. Balogh; Jeremy T. Tyson; Kevin Wildrick
Analysis and Geometry in Metric Spaces (2013)
- Volume: 1, page 232-254
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Arcozzi, N., and Baldi, A. From Grushin to Heisenberg via an isoperimetric problem. J. Math. Anal. Appl. 340, 1 (2008), 165–174. [WoS] Zbl1134.53016
- [2] Aronszajn, N. Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57, 2 (1976), 147–190. [WoS] Zbl0342.46034
- [3] Astala, K. Area distortion of quasiconformal mappings. Acta Math. 173, 1 (1994), 37–60. Zbl0815.30015
- [4] Balogh, Z. M., Fässler, K., Mattila, P., and Tyson, J. T. Projection and slicing theorems in Heisenberg groups. Adv. Math. 231, 2 (2012), 569–604. [WoS] Zbl1260.28007
- [5] Balogh, Z. M., Monti, R., and Tyson, J. T. Frequency of Sobolev and quasiconformal dimension distortion. J. Math. Pures Appl. (9) 99, 2 (2013), 125–149. [WoS] Zbl1266.28003
- [6] Balogh, Z. M., Tyson, J. T., and Warhurst, B. Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry in Carnot groups. Adv. Math. 220 (2009), 560–619. [WoS] Zbl1155.22011
- [7] Balogh, Z. M., Tyson, J. T., and Wildrick, K. Frequency of Sobolev dimension distortion of horizontal subgroups of Heisenberg groups. (preprint, arXiv:1303.7094 [math.MG]).
- [8] Bellaïche, A. The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry, vol. 144 of Progr. Math. Birkhäuser, Basel, 1996, pp. 1–78. Zbl0862.53031
- [9] Bishop, C., and Hakobyan, H. Frequency of dimension distortion under quasisymmetric mappings. (preprint, 2012).
- [10] Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 3 (1999), 428–517. [Crossref] Zbl0942.58018
- [11] Christensen, J. P. R. Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings. Publ. Dép. Math. (Lyon) 10, 2 (1973), 29–39. Actes du Deuxième Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29–39. Zbl0302.43001
- [12] Csörnyei, M. Aronszajn null and Gaussian null sets coincide. Israel J. Math. 111 (1999), 191–201. Zbl0952.46030
- [13] David, G., and Semmes, S. Regular mappings between dimensions. Publ. Mat. 44, 2 (2000), 369–417. [Crossref] Zbl1041.42010
- [14] Gehring, F. W. The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265–277. Zbl0258.30021
- [15] Gehring, F. W., and Väisälä, J. Hausdorff dimension and quasiconformal mappings. J. London Math. Soc. (2) 6 (1973), 504–512. Zbl0258.30020
- [16] Hajłasz, P., and Koskela, P. Sobolev met Poincaré. Mem. Amer. Math. Soc. 145, 688 (2000), x+101. Zbl0954.46022
- [17] Heinonen, J. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. Zbl0985.46008
- [18] Heinonen, J., and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1 (1998), 1–61. Zbl0915.30018
- [19] Heinonen, J., Koskela, P., Shanmugalingam, N., and Tyson, J. T. Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85 (2001), 87–139. Zbl1013.46023
- [20] Hencl, S., and Honzík, P. Dimension of images of subspaces under Sobolev mappings. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 3 (2012), 401–411. Zbl1245.28006
- [21] Hunt, B. R., and Kaloshin, V. Y. How projections affect the dimension spectrum of fractal measures. Nonlinearity 10, 5 (1997), 1031–1046. [Crossref] Zbl0903.28008
- [22] Hunt, B. R., Sauer, T. D., and Yorke, J. A. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27, 2 (1992), 217–238. [Crossref] Zbl0763.28009
- [23] Kaufman, R. P. Sobolev spaces, dimension, and random series. Proc. Amer. Math. Soc. 128, 2 (2000), 427–431. Zbl0938.28001
- [24] Mackay, J. M., Tyson, J. T., and Wildrick, K. Modulus and Poincaré inequalities on non-self-similar Sierpinski carpets. Geom. Funct. Anal. 23, 3 (2013), 985-1034 [WoS][Crossref] Zbl1271.30032
- [25] Mattila, P. Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Zbl0819.28004
- [26] Ott, W., and Yorke, J. A. Prevalence. Bull. Amer. Math. Soc. (N.S.) 42, 3 (2005), 263–290 (electronic). [Crossref]
- [27] Rothschild, L. P., and Stein, E. M. Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 3-4 (1976), 247–320. Zbl0346.35030
- [28] Sauer, T. D., and Yorke, J. A. Are the dimensions of a set and its image equal under typical smooth functions? Ergodic Theory Dynam. Systems 17, 4 (1997), 941–956. Zbl0884.28006
- [29] Seo, J. A characterization of bi-Lipschitz embeddable metric spaces in terms of local bi-Lipschitz embeddability. Math. Res. Lett. 18, 6 (2011), 1179–1202. [Crossref] Zbl1273.30054
- [30] Shanmugalingam, N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 2 (2000), 243–279. [Crossref] Zbl0974.46038
- [31] Ziemer, W. P. Weakly differentiable functions, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989.