Displaying similar documents to “Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces”

Quantum optimal control using the adjoint method

Alfio Borzì (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal...

Fractional Maximal Functions in Metric Measure Spaces

Toni Heikkinen, Juha Lehrbäck, Juho Nuutinen, Heli Tuominen (2013)

Analysis and Geometry in Metric Spaces

Similarity:

We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.

A numerically efficient approach to the modelling of double-Qdot channels

A. Shamloo, A.P. Sowa (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab...

On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators

Elena Di Bernardino, Didier Rullière (2013)

Dependence Modeling

Similarity:

We study the impact of certain transformations within the class of Archimedean copulas. We give some admissibility conditions for these transformations, and define some equivalence classes for both transformations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence classes, gives us new expressions of transformations and generators. Estimators deriving directly...

Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations

M. R. Swager, Y. C. Zhou (2013)

Molecular Based Mathematical Biology

Similarity:

A general approach was proposed in this article to develop high-order exponentially fitted basis functions for finite element approximations of multi-dimensional drift-diffusion equations for modeling biomolecular electrodiffusion processes. Such methods are highly desirable for achieving numerical stability and efficiency. We found that by utilizing the one-to-one correspondence between the continuous piecewise polynomial space of degree k + 1 and the divergencefree vector space of...

An inverse problem for adhesive contact and non-direct evaluation of material properties for nanomechanics applications

F.M. Borodich, B.A. Galanov, S.N. Gorb, M.Y. Prostov, Y.I. Prostov, M.M. Suarez-Alvarez (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We show how the values of the effective elastic modulus of contacting solids and the work of adhesion, that are the crucial material parameters for application of theories of adhesive contact to nanomechanics, may be quantified from a single test using a non-direct approach (the Borodich-Galanov (BG) method). Usually these characteristics are not determined from the same test, e.g. often sharp pyramidal indenters are used to determine the elastic modulus from a nanoindentation test,...

An overview of some recent developments on the Invariant Subspace Problem

Isabelle Chalendar, Jonathan R. Partington (2013)

Concrete Operators

Similarity:

This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.

Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes

Tao Liao, Yongjie Zhang, Peter M. Kekenes-Huskey, Yuhui Cheng, Anushka Michailova, Andrew D. McCulloch, Michael Holst, J. Andrew McCammon (2013)

Molecular Based Mathematical Biology

Similarity:

Multi-scale modeling plays an important role in understanding the structure and biological functionalities of large biomolecular complexes. In this paper, we present an efficient computational framework to construct multi-scale models from atomic resolution data in the Protein Data Bank (PDB), which is accelerated by multi-core CPU and programmable Graphics Processing Units (GPU). A multi-level summation of Gaussian kernel functions is employed to generate implicit models for biomolecules....

Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

Amelia B. Kreienkamp, Lucy Y. Liu, Mona S. Minkara, Matthew G. Knepley, Jaydeep P. Bardhan, Mala L. Radhakrishnan (2013)

Molecular Based Mathematical Biology

Similarity:

We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins¶a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue...

Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence

Carole Bernard, Yuntao Liu, Niall MacGillivray, Jinyuan Zhang (2013)

Dependence Modeling

Similarity:

Nelsen et al. [20] find bounds for bivariate distribution functions when there are constraints on the values of its quartiles. Tankov [25] generalizes this work by giving explicit expressions for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0; 1]2 are known. He shows that they are quasi-copulas and not necessarily copulas. Tankov [25] and Bernard et al. [3] both give sufficient conditions for these bounds to be copulas. In this note we...

High-order fractional partial differential equation transform for molecular surface construction

Langhua Hu, Duan Chen, Guo-Wei Wei (2013)

Molecular Based Mathematical Biology

Similarity:

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions....