The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix
Special Matrices (2014)
- Volume: 2, Issue: 1, page 131-147, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. D. Abreu, J. Bustoz, J. L. Cardoso: The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67 (2003) 4241-4248. Zbl1063.33023
- [2] A. Alonso, B. Simon: The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory 4 (1980) 251-270. Zbl0467.47017
- [3] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis, (Oliver & Boyd, Edinburgh, 1965).
- [4] M. H. Annaby, Z. S. Mansour: On the zeros of the second and third Jackson q-Bessel functions and their associated q-Hankel transforms, Math. Proc. Camb. Phil. Soc. 147 (2009) 47-67. [WoS] Zbl1175.33013
- [5] B. M. Brown, J. S. Christiansen: On the Krein and Friedrichs extensions of a positive Jacobi operator, Expo. Math. 23 (2005) 179-186. Zbl1078.39019
- [6] G. Gasper, M. Rahman: Basic Hypergeometric Series, (Cambridge University Press, Cambridge, 1990).
- [7] T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach, Science Publishers, Inc., New York, 1978).
- [8] T. Kato: Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin, 1980). Zbl0435.47001
- [9] H. T. Koelink: Some basic Lommel polynomials, J. Approx. Theory 96 (1999) 345-365. Zbl0926.33003
- [10] H. T. Koelink,W. Van Assche: Orthogonal polynomials and Laurent polynomials related to the Hahn-Exton q-Bessel function, Constr. Approx. 11 (1995) 477-512. Zbl0855.33011
- [11] H. T. Koelink, R. F. Swarttouw: On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl. 186 (1994) 690-710. Zbl0811.33013
- [12] L. O. Silva, R. Weder: On the two-spectra inverse problemfor semi-infinite Jacobi matrices in the limit-circle case,Math. Phys. Anal. Geom. 11 (2008) 131-154. [WoS] Zbl1189.47030
- [13] B. Simon: The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998) 82-203. Zbl0910.44004
- [14] F. Štampach, P. Šťovíček: The characteristic function for Jacobi matrices with applications, Linear Algebra Appl. 438 (2013) 4130-4155. [WoS] Zbl1300.47040
- [15] F. Štampach, P. Šťovíček: Special functions and spectrum of Jacobi matrices, Linear Algebra Appl., in press, available online: http://dx.doi.org/10.1016/j.laa.2013.06.024. [Crossref] Zbl1330.47033
- [16] G. Teschl: Jacobi Operators and Completely Integrable Nonlinear Lattices, (AMS, Rhode Island, 2000).
- [17] W. Van Assche: The ratio of q-like orthogonal polynomials, J. Math. Anal. Appl. 128 (1987) 535-547. Zbl0634.33018
- [18] J. Weidmann. Linear Operators in Hilbert Spaces. (Springer-Verlag, New York, 1980). Zbl0434.47001