Eigenvalues of a Linear Transformation

Karol Pąk

Formalized Mathematics (2008)

  • Volume: 16, Issue: 4, page 289-295
  • ISSN: 1426-2630

Abstract

top
The article presents well known facts about eigenvalues of linear transformation of a vector space (see [13]). I formalize main dependencies between eigenvalues and the diagram of the matrix of a linear transformation over a finite-dimensional vector space. Finally, I formalize the subspace [...] called a generalized eigenspace for the eigenvalue λ and show its basic properties.MML identifier: VECTSP11, version: 7.9.03 4.108.1028

How to cite

top

Karol Pąk. "Eigenvalues of a Linear Transformation." Formalized Mathematics 16.4 (2008): 289-295. <http://eudml.org/doc/267094>.

@article{KarolPąk2008,
abstract = {The article presents well known facts about eigenvalues of linear transformation of a vector space (see [13]). I formalize main dependencies between eigenvalues and the diagram of the matrix of a linear transformation over a finite-dimensional vector space. Finally, I formalize the subspace [...] called a generalized eigenspace for the eigenvalue λ and show its basic properties.MML identifier: VECTSP11, version: 7.9.03 4.108.1028},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {289-295},
title = {Eigenvalues of a Linear Transformation},
url = {http://eudml.org/doc/267094},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Karol Pąk
TI - Eigenvalues of a Linear Transformation
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 4
SP - 289
EP - 295
AB - The article presents well known facts about eigenvalues of linear transformation of a vector space (see [13]). I formalize main dependencies between eigenvalues and the diagram of the matrix of a linear transformation over a finite-dimensional vector space. Finally, I formalize the subspace [...] called a generalized eigenspace for the eigenvalue λ and show its basic properties.MML identifier: VECTSP11, version: 7.9.03 4.108.1028
LA - eng
UR - http://eudml.org/doc/267094
ER -

References

top
  1. [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007. 
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992. 
  5. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  6. [6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990. 
  7. [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  8. [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  9. [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  10. [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  11. [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  12. [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  13. [13] I.N. Herstein and David J. Winter. Matrix Theory and Linear Algebra. Macmillan, 1988. Zbl0704.15001
  14. [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  15. [15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  16. [16] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  17. [17] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001. 
  18. [18] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001. 
  19. [19] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001. 
  20. [20] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991. 
  21. [21] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991. 
  22. [22] Karol Pαk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007. 
  23. [23] Karol Pαk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143-150, 2007. 
  24. [24] Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008. 
  25. [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  26. [26] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990. 
  27. [27] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  28. [28] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990. 
  29. [29] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990. 
  30. [30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990. 
  31. [31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  32. [32] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991. 
  33. [33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  34. [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  35. [35] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.