Jordan Matrix Decomposition

Karol Pąk

Formalized Mathematics (2008)

  • Volume: 16, Issue: 4, page 297-303
  • ISSN: 1426-2630

Abstract

top
In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form [...] where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diagonal matrix in which each block consists of Jordan blocks (see [13]).MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015

How to cite

top

Karol Pąk. "Jordan Matrix Decomposition." Formalized Mathematics 16.4 (2008): 297-303. <http://eudml.org/doc/267499>.

@article{KarolPąk2008,
abstract = {In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form [...] where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diagonal matrix in which each block consists of Jordan blocks (see [13]).MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {297-303},
title = {Jordan Matrix Decomposition},
url = {http://eudml.org/doc/267499},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Karol Pąk
TI - Jordan Matrix Decomposition
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 4
SP - 297
EP - 303
AB - In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form [...] where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diagonal matrix in which each block consists of Jordan blocks (see [13]).MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015
LA - eng
UR - http://eudml.org/doc/267499
ER -

References

top
  1. [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007. 
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990. 
  6. [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  7. [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  8. [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  9. [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990. 
  10. [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  11. [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  12. [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  13. [13] Gene H. Golub and J. H. Wilkinson. Ill-conditioned eigensystems and the computation of the Jordan normal form. SIAM Review, vol. 18, nr. 4, pp. 5788211;619, 1976. Zbl0341.65027
  14. [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  15. [15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991. 
  16. [16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997. 
  17. [17] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992. 
  18. [18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  19. [19] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  20. [20] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001. 
  21. [21] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991. 
  22. [22] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991. 
  23. [23] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993. 
  24. [24] Karol Pαk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143-150, 2007. 
  25. [25] Karol Pąk. Block diagonal matrices. Formalized Mathematics, 16(3):259-267, 2008. 
  26. [26] Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289-295, 2008. 
  27. [27] Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269-275, 2008. 
  28. [28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  29. [29] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  30. [30] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  31. [31] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990. 
  32. [32] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990. 
  33. [33] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  34. [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  35. [35] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005. 
  36. [36] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992. 
  37. [37] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.