Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch; Toufik Mekkaoui

Nonautonomous Dynamical Systems (2014)

  • Volume: 1, page 61-71, electronic only
  • ISSN: 2353-0626

Abstract

top
In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

How to cite

top

Zakia Hammouch, and Toufik Mekkaoui. "Chaos synchronization of a fractional nonautonomous system." Nonautonomous Dynamical Systems 1 (2014): 61-71, electronic only. <http://eudml.org/doc/267097>.

@article{ZakiaHammouch2014,
abstract = {In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.},
author = {Zakia Hammouch, Toufik Mekkaoui},
journal = {Nonautonomous Dynamical Systems},
keywords = {Chaos; Fractional-order system; Active control; PLL; Synchronization; chaos; fractional-order system; active control; synchronization},
language = {eng},
pages = {61-71, electronic only},
title = {Chaos synchronization of a fractional nonautonomous system},
url = {http://eudml.org/doc/267097},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Zakia Hammouch
AU - Toufik Mekkaoui
TI - Chaos synchronization of a fractional nonautonomous system
JO - Nonautonomous Dynamical Systems
PY - 2014
VL - 1
SP - 61
EP - 71, electronic only
AB - In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.
LA - eng
KW - Chaos; Fractional-order system; Active control; PLL; Synchronization; chaos; fractional-order system; active control; synchronization
UR - http://eudml.org/doc/267097
ER -

References

top
  1. [1] E.W. Bai, K. E. Lonngren, Synchronization of two Lorenz systems using active control, Chaos, Solitons Fractals, 8 (1997) pp.51-58. [Crossref] Zbl1079.37515
  2. [2] A. Blokh, C. Cleveland, M. Misiurewicz, Expanding polymodials. Modern dynamical systems and applications, 253–270, Cambridge Univ. Press, Cambridge, 2004. Zbl1147.37335
  3. [3] R.Caponetto, G.Dongola, and L.Fortuna, Fractional order systems: Modeling and control application, World Scientific, Singapore, 2010. Zbl1207.82058
  4. [4] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, J. Roy. Astral.Soc. 13(1967) pp.529- 539. [Crossref] 
  5. [5] A. Chamgoué, R. Yamapi and P. Woafo, Bifurcations in a birhythmic biological system with time-delayed noise, Nonlinear Dynamics. 73, (2013) pp.2157-2173. [WoS] 
  6. [6] K.Diethelm and N.Ford, Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 265 (2002) pp.229-248. Zbl1014.34003
  7. [7] K.Diethelm, N.Ford, A.Freed and Y.Luchko, Algorithms for the fractional calculus: a selection of numerical method, Computer Methods in Applied Mechanics and Engineering, 94 (2005) pp.743-773. [Crossref] Zbl1119.65352
  8. [8] H. Frohlich. Long Range Coherence and energy storage in a Biological systems. Int. J. Quantum Chem. 641 (1968) pp.649- 652. 
  9. [9] H. Frohlich, Quantum Mechanical Concepts in Biology. Theoretical Physics and Biology.(1969). 
  10. [10] M. Haeri and A. Emadzadeh, Synchronizing different chaotic systems using active sliding mode control, Chaos, Solitons and Fractals. 31 (2007) pp.119-129. [WoS][Crossref] Zbl1142.93394
  11. [11] G.He and M.Luo, Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control, Appl. Math. Mech. Engl. Ed., 33 (2012), pp.567-582. [Crossref] Zbl1266.34022
  12. [12] W. Hongwu and M. Junhai, Chaos Controland Synchronization of a Fractional-order Autonomous System, WSEAS Trans. on Mathematics. 11, , (2012) pp. 700-711. 
  13. [13] H.G.Kadji, J.B.Orou, R. Yamapi and P. Woafo, Nonlinear Dynamics and Strange Attractors in the Biological System. Chaos Solitons and Fractals. 32 (2007) pp.862–882. [Crossref][WoS] Zbl1138.37050
  14. [14] F. Kaiser, Coherent Oscillations in Biological Systems I. Bifurcations Phenomena and Phase transitions in enzymesubstrate reaction with Ferroelectric behaviour. Z Naturforsch A. 294 (1978) pp.304-333. 
  15. [15] F. Kaiser, Coherent Oscillations in Biological Systems II. Lecture Notes in Mathematics, 1907. Springer, Berlin, (2007). 
  16. [16] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Science. 20, (1963) pp.130-141. 
  17. [17] L. Lu, C. Zhang and Z.A. Guo, Synchronization between two different chaotic systems with nonlinear feedback control, Chinese Physics, 16(2007) pp.1603-1607. 
  18. [18] D. Matignon. Stability results for fractional differential equations with applications to control processing.Proceedings Comp. Eng. Sys. Appl., 963-968, 1996. 
  19. [19] K.S Miller and B. Rosso, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York 1993. 
  20. [20] K. B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York, NY, USA, 1974. Zbl0292.26011
  21. [21] O.Olusola, E. Vincent,N. Njah and E. Ali, Control and Synchronization of Chaos in Biological Systems Via Backsteping Design. International Journal of Nonlinear Science . 11 (2011) pp.121-128 Zbl1237.93061
  22. [22] V.T.Pham, M.Frasca, R.Caponetto, T.M.Hoang and Luigi Fortuna, Control and synchronization of fractional-order differential equations of phase-locked-loop. Chaotic Modeling and Simulation (CMSIM), 4. (2012) pp.623-631. 
  23. [23] L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, (1990) pp.821-824. [Crossref][PubMed] Zbl0938.37019
  24. [24] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, 2011. 
  25. [25] A.Pikovsky, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press 2011. Zbl0993.37002
  26. [26] I.Podlubny, Fractional Differential Equations: Mathematics in Science and Engineering. Academic Press-USA 1999. 
  27. [27] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Perseus Books Pub., 1994. 
  28. [28] A. Ucar, K.E. Lonngren and E.W. Bai, Synchronization of the unified chaotic systems via active control, Chaos, Solitons and Fractals. 27 (2006) pp.1292-97. [Crossref][WoS] Zbl1091.93030
  29. [29] Y. Wang, Z.H. Guan and H.O. Wang, Feedback an adaptive control for the synchronization of Chen system via a single variable, Phys. Lett A. 312 (2003) pp.34-40. Zbl1024.37053
  30. [30] G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, 2008. Zbl1152.37001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.