The Definition of Topological Manifolds
Formalized Mathematics (2011)
- Volume: 19, Issue: 1, page 41-44
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMarco Riccardi. "The Definition of Topological Manifolds." Formalized Mathematics 19.1 (2011): 41-44. <http://eudml.org/doc/267195>.
@article{MarcoRiccardi2011,
abstract = {This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {41-44},
title = {The Definition of Topological Manifolds},
url = {http://eudml.org/doc/267195},
volume = {19},
year = {2011},
}
TY - JOUR
AU - Marco Riccardi
TI - The Definition of Topological Manifolds
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 1
SP - 41
EP - 44
AB - This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].
LA - eng
UR - http://eudml.org/doc/267195
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
- [11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
- [12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T. Formalized Mathematics, 12(3):301-306, 2004.
- [13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. Zbl0956.57001
- [14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
- [15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.[Crossref]
- [18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.
- [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.