The Definition of Topological Manifolds

Marco Riccardi

Formalized Mathematics (2011)

  • Volume: 19, Issue: 1, page 41-44
  • ISSN: 1426-2630

Abstract

top
This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].

How to cite

top

Marco Riccardi. "The Definition of Topological Manifolds." Formalized Mathematics 19.1 (2011): 41-44. <http://eudml.org/doc/267195>.

@article{MarcoRiccardi2011,
abstract = {This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {41-44},
title = {The Definition of Topological Manifolds},
url = {http://eudml.org/doc/267195},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Marco Riccardi
TI - The Definition of Topological Manifolds
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 1
SP - 41
EP - 44
AB - This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].
LA - eng
UR - http://eudml.org/doc/267195
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  4. [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  5. [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  6. [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990. 
  7. [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  8. [8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999. 
  9. [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  10. [10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991. 
  11. [11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992. 
  12. [12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T. Formalized Mathematics, 12(3):301-306, 2004. 
  13. [13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. Zbl0956.57001
  14. [14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998. 
  15. [15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991. 
  16. [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  17. [17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.[Crossref] 
  18. [18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998. 
  19. [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.