Nonexistence Results for Semilinear Equations in Carnot Groups

Fausto Ferrari; Andrea Pinamonti

Analysis and Geometry in Metric Spaces (2013)

  • Volume: 1, page 130-146
  • ISSN: 2299-3274

Abstract

top
In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.

How to cite

top

Fausto Ferrari, and Andrea Pinamonti. "Nonexistence Results for Semilinear Equations in Carnot Groups." Analysis and Geometry in Metric Spaces 1 (2013): 130-146. <http://eudml.org/doc/267347>.

@article{FaustoFerrari2013,
abstract = {In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.},
author = {Fausto Ferrari, Andrea Pinamonti},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Semilinear PDEs; Carnot groups; nonexistence results; semilinear PDEs},
language = {eng},
pages = {130-146},
title = {Nonexistence Results for Semilinear Equations in Carnot Groups},
url = {http://eudml.org/doc/267347},
volume = {1},
year = {2013},
}

TY - JOUR
AU - Fausto Ferrari
AU - Andrea Pinamonti
TI - Nonexistence Results for Semilinear Equations in Carnot Groups
JO - Analysis and Geometry in Metric Spaces
PY - 2013
VL - 1
SP - 130
EP - 146
AB - In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.
LA - eng
KW - Semilinear PDEs; Carnot groups; nonexistence results; semilinear PDEs
UR - http://eudml.org/doc/267347
ER -

References

top
  1. L. Ambrosio, B. Kleiner, E. Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: Existence of a tangent hyperplane, J. Geom. Anal. 19, 509-540 (2009) [WoS] Zbl1187.28008
  2. C. Bellettini, E. Le Donne, Regularity of sets with constant horizontal normal in the Engel group, to appear on Communications in Analysis and Geometry. Zbl1281.53037
  3. I. Birindelli, F. Ferrari, E. Valdinoci, Semilinear PDEs in the Heisenberg group: the role of the right invariant vector fields, Nonlinear Anal. 72,987-997 (2010) Zbl1185.35307
  4. I. Birindelli, E. Lanconelli, A negative answer to a one-dimensional symmetry problem in the Heisenberg group, Calc. Var. PDE 18, 357-372 (2003) Zbl1290.35038
  5. I. Birindelli, J. Prajapat, Monotonicity results for Nilpotent stratified groups, Pacific J. Math 204, 1-17 (2002) Zbl1158.35305
  6. A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics, (2007) Zbl1128.43001
  7. L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser (2006). Zbl1138.53003
  8. W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordung, Math. Annalen 117, 98-105 (1939). Zbl65.0398.01
  9. D. Danielli, N. Garofalo, D. M. Nhieu, Sub-Riemannian calculus on hypersurfaces in Carnot groups, Adv. Math. 215, 292-378 (2007). [WoS] Zbl1129.53017
  10. A. Farina, Propriétés qualitatives de solutions d’équations et systèmes d’équations non-linéaires. Habilitation à diriger des recherches, Paris VI (2002). 
  11. A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, 741-791 (2008). Zbl1180.35251
  12. A. Farina, E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. In: Du, Y., Ishii, H., Lin, W.-Y. (eds.), Recent Progress on Reaction Diffusion System and Viscosity Solutions. Series on Advances in Mathematics for Applied Sciences, 372 World Scientific, Singapore (2008). Zbl1183.35137
  13. F. Ferrari, E. Valdinoci, A geometric inequality in the Heisenberg group and its applications to stable solutions of semilinear problems, Math. Annalen 343, 351-370 (2009). [WoS] Zbl1173.35057
  14. F. Ferrari, E. Valdinoci, Geometric PDEs in the Grushin plane: weighted inequalities and flatness of level sets, Int. Math. Res. Not. IMRN 22, 4232-4270 (2009). Zbl1186.35031
  15. F. Ferrari, E. Valdinoci, Some weighted Poincaré inequalities, Indiana Univ. Math. J. 58, 1619-1637 (2009). Zbl1179.35121
  16. B. Franchi, R. Serapioni, F. Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13, 421-466 (2003). Zbl1064.49033
  17. N. Garofalo, E. Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41, 71-98 (1992). Zbl0793.35037
  18. M. Gromov, Carnot-Carathéodory spaces seen from within, in Subriemannian Geometry, Progress in Mathematics, 144, Bellaiche, A. and Risler, J., Eds., Birkäuser Verlang, Basel 1996. Zbl0864.53025
  19. L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967). Zbl0156.10701
  20. M. Marchi, Rectifiability of sets of finite perimeter in a class of Carnot groups of arbitrary step available at http://arxiv.org/pdf/1201.3277v1.pdf. 
  21. R. Montgomery, A tour of Subriemannian geometries, their geodesics and applications, mathematical surveys and monographs, 91, Amer. Math. Soc., Providence 2002. Zbl1044.53022
  22. R. Monti, Distances, boundaries and surface measures in Carnot-Carathéodory spaces, UTM PhDTS, Department of Mathematics, University of Trento (2001), available at http://www.math.unipd.it/ monti/pubblicazioni.html. Zbl1032.49045
  23. A. Pinamonti, E. Valdinoci, A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group, Ann. Acad. Sci. Fenn. Math. 37, 357-373 (2012). [WoS] Zbl06114361
  24. P. Sternberg, K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503, 63-85 (1998). Zbl0967.53006
  25. P. Sternberg, K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal. 141, 375-400 (1998). Zbl0911.49025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.