Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina; Berardino Sciunzi; Enrico Valdinoci

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 4, page 741-791
  • ISSN: 0391-173X

Abstract

top
We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form
Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  and  and of the Bernstein problem on the flatness of minimal area graphs in . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for -Laplacian type operators.

How to cite

top

Farina, Alberto, Sciunzi, Berardino, and Valdinoci, Enrico. "Bernstein and De Giorgi type problems: new results via a geometric approach." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 741-791. <http://eudml.org/doc/272280>.

@article{Farina2008,
abstract = {We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form\[ \{\,\{\rm div\}\,\} \Big (a(|\nabla u(x)|) \nabla u(x)\Big )+f(u(x))=0.\]Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in $\mathbb \{R\}^2$ and $\mathbb \{R\}^3$ and of the Bernstein problem on the flatness of minimal area graphs in $\mathbb \{R\}^3$. A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for $1$-Laplacian type operators.},
author = {Farina, Alberto, Sciunzi, Berardino, Valdinoci, Enrico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Bernstein problem; De Giorgi problem; quasilinear elliptic equation},
language = {eng},
number = {4},
pages = {741-791},
publisher = {Scuola Normale Superiore, Pisa},
title = {Bernstein and De Giorgi type problems: new results via a geometric approach},
url = {http://eudml.org/doc/272280},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Farina, Alberto
AU - Sciunzi, Berardino
AU - Valdinoci, Enrico
TI - Bernstein and De Giorgi type problems: new results via a geometric approach
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 741
EP - 791
AB - We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form\[ {\,{\rm div}\,} \Big (a(|\nabla u(x)|) \nabla u(x)\Big )+f(u(x))=0.\]Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in $\mathbb {R}^2$ and $\mathbb {R}^3$ and of the Bernstein problem on the flatness of minimal area graphs in $\mathbb {R}^3$. A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for $1$-Laplacian type operators.
LA - eng
KW - Bernstein problem; De Giorgi problem; quasilinear elliptic equation
UR - http://eudml.org/doc/272280
ER -

References

top
  1. [1] G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math.65 (2001), 9–33. Zbl1121.35312MR1843784
  2. [2] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000) (electronic), 725–739. Zbl0968.35041MR1775735
  3. [3] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997-1998), 69–94. Zbl1079.35513MR1655510
  4. [4] S. Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z.26 (1927), 551–558. Zbl53.0670.01MR1544873JFM53.0670.01
  5. [5] L. Caffarelli, N. Garofalo and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math.47 (1994), 1457–1473. Zbl0819.35016MR1296785
  6. [6] L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of -Laplace equations, J. Differential Equations206 (2004), 483–515. Zbl1108.35069MR2096703
  7. [7] D. Danielli and N. Garofalo, Properties of entire solutions of non-uniformly elliptic equations arising in geometry and in phase transitions, Calc. Var. Partial Differential Equations15 (2002), 451–491. Zbl1043.49018MR1942128
  8. [8] E. De Giorgi, Convergence problems for functionals and operators, In: “Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978)”, Bologna, 1979, 131–188, Pitagora Editrice. Zbl0405.49001MR533166
  9. [9] E. DiBenedetto, local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827–850. Zbl0539.35027MR709038
  10. [10] L. C. Evans and R. F. Gariepy, “Measure theory and fine properties of functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
  11. [11] A. Farina, “Propriétés qualitatives de solutions d’équations et systèmes d’équations non-linéaires”, Habilitation à diriger des recherches, Paris VI, 2002. 
  12. [12] A. Farina, One-dimensional symmetry for solutions of quasilinear equations in , Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.6 (2003), 685–692. Zbl1115.35045MR2014827
  13. [13] A. Farina, Liouville-type theorems for elliptic problems, In: “Handbook of Differential Equations: Stationary Partial Differential Equations” M. Chipot (ed.), Vol. IV Elsevier B. V., Amsterdam, 2007, 61–116. Zbl1191.35128MR2569331
  14. [14] A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Preliminary version of this paper, available at http://cvgmt.sns.it/papers/, 2007. Zbl1180.35251MR2483642
  15. [15] A. Farina and E. Valdinoci, D symmetry for solutions of semilinear and quasilinear elliptic equations, Preprint, 2008. Zbl1228.35105MR2413100
  16. [16] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in -manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math.33 (1980), 199–211. Zbl0439.53060MR562550
  17. [17] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann.311 (1998), 481–491. Zbl0918.35046MR1637919
  18. [18] D. Gilbarg and N. S. Trudinger, “Elliptic partial differential equations of second order”, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Zbl1042.35002MR1814364
  19. [19] E. H. Lieb and M. Loss, “Analysis”, Vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1997. Zbl0966.26002MR1415616
  20. [20] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math.38 (1985), 679–684. Zbl0612.35051MR803255
  21. [21] W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pacific J. Math.75 (1978), 219–226. Zbl0381.35026MR500041
  22. [22] O. Savin, Regularity of flat level sets in phase transitions, to appear in Ann. of Math. 2008. Zbl1180.35499MR2480601
  23. [23] E. Sernesi, “Geometria 2”, Bollati Boringhieri, Torino, 1994. 
  24. [24] L. Simon, “Singular Sets and Asymptotics in Geometric Analysis”, Lipschitz Lectures. Institut für Angewandte Mathematik, http://math.stanford.edu/lms/lipschitz/lipschitz.pdf, Bonn, 2007. 
  25. [25] Y. S. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, preprint, 2008. Zbl1163.35019
  26. [26] P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal.141 (1998), 375–400. Zbl0911.49025MR1620498
  27. [27] P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math.503 (1998), 63–85. Zbl0967.53006MR1650327
  28. [28] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984), 126–150. Zbl0488.35017MR727034
  29. [29] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math.138 (1977), 219–240. Zbl0372.35030MR474389
  30. [30] E. Valdinoci, B. Sciunzi and V. O. Savin, Flat level set regularity of -Laplace phase transitions, Mem. Amer. Math. Soc. 182 (2006), vi–144. Zbl1138.35029MR2228294

NotesEmbed ?

top

You must be logged in to post comments.