Riemann Integral of Functions from R into Real Normed Space

Keiichi Miyajima; Takahiro Kato; Yasunari Shidama

Formalized Mathematics (2011)

  • Volume: 19, Issue: 1, page 17-22
  • ISSN: 1426-2630

Abstract

top
In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].

How to cite

top

Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. "Riemann Integral of Functions from R into Real Normed Space." Formalized Mathematics 19.1 (2011): 17-22. <http://eudml.org/doc/267495>.

@article{KeiichiMiyajima2011,
abstract = {In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].},
author = {Keiichi Miyajima, Takahiro Kato, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {17-22},
title = {Riemann Integral of Functions from R into Real Normed Space},
url = {http://eudml.org/doc/267495},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Keiichi Miyajima
AU - Takahiro Kato
AU - Yasunari Shidama
TI - Riemann Integral of Functions from R into Real Normed Space
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 1
SP - 17
EP - 22
AB - In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].
LA - eng
UR - http://eudml.org/doc/267495
ER -

References

top
  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  3. [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  4. [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  5. [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  6. [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  7. [7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999. 
  8. [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197-200, 2001. 
  9. [9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001. 
  10. [10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001. 
  11. [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  12. [12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  13. [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  14. [14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  15. [15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  16. [16] Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974. 
  17. [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  18. [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  19. [19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  20. [20] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. 

Citations in EuDML Documents

top
  1. Keiko Narita, Noboru Endou, Yasunari Shidama, Riemann Integral of Functions from ℝ into Real Banach Space
  2. Keiko Narita, Noboru Endou, Yasunari Shidama, The Linearity of Riemann Integral on Functions from ℝ into Real Banach Space
  3. Keiichi Miyajima, Artur Korniłowicz, Yasunari Shidama, Riemann Integral of Functions from R into n -dimensional Real Normed Space
  4. Keiko Narita, Noboru Endou, Yasunari Shidama, Differential Equations on Functions from R into Real Banach Space
  5. Keiichi Miyajima, Artur Korniłowicz, Yasunari Shidama, Contracting Mapping on Normed Linear Space

NotesEmbed ?

top

You must be logged in to post comments.