Riemann Integral of Functions from R into n -dimensional Real Normed Space

Keiichi Miyajima; Artur Korniłowicz; Yasunari Shidama

Formalized Mathematics (2012)

  • Volume: 20, Issue: 1, page 79-86
  • ISSN: 1426-2630

Abstract

top
In this article, we define the Riemann integral on functions R into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21].

How to cite

top

Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. " Riemann Integral of Functions from R into n -dimensional Real Normed Space ." Formalized Mathematics 20.1 (2012): 79-86. <http://eudml.org/doc/267713>.

@article{KeiichiMiyajima2012,
abstract = {In this article, we define the Riemann integral on functions R into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21].},
author = {Keiichi Miyajima, Artur Korniłowicz, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {79-86},
title = { Riemann Integral of Functions from R into n -dimensional Real Normed Space },
url = {http://eudml.org/doc/267713},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Keiichi Miyajima
AU - Artur Korniłowicz
AU - Yasunari Shidama
TI - Riemann Integral of Functions from R into n -dimensional Real Normed Space
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 1
SP - 79
EP - 86
AB - In this article, we define the Riemann integral on functions R into n-dimensional real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to the wider range. Our method refers to the [21].
LA - eng
UR - http://eudml.org/doc/267713
ER -

References

top
  1. Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  2. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  5. Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  6. Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  7. Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  8. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  9. Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  10. Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999. 
  11. Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005. 
  12. Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197-200, 2001. 
  13. Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001. 
  14. Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001. 
  15. Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space. Formalized Mathematics, 19(1):17-22, 2011, doi: 10.2478/v10037-011-0003-8.[Crossref] Zbl1276.26025
  16. Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rn. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.[Crossref] 
  17. Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.[Crossref] Zbl1276.26006
  18. Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  19. Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  20. Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  21. Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974. 
  22. Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  23. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  24. Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  25. Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  26. Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.