Contracting Mapping on Normed Linear Space

Keiichi Miyajima; Artur Korniłowicz; Yasunari Shidama

Formalized Mathematics (2012)

  • Volume: 20, Issue: 4, page 291-301
  • ISSN: 1426-2630

Abstract

top
In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].

How to cite

top

Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. "Contracting Mapping on Normed Linear Space." Formalized Mathematics 20.4 (2012): 291-301. <http://eudml.org/doc/267733>.

@article{KeiichiMiyajima2012,
abstract = {In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].},
author = {Keiichi Miyajima, Artur Korniłowicz, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {291-301},
title = {Contracting Mapping on Normed Linear Space},
url = {http://eudml.org/doc/267733},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Keiichi Miyajima
AU - Artur Korniłowicz
AU - Yasunari Shidama
TI - Contracting Mapping on Normed Linear Space
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 4
SP - 291
EP - 301
AB - In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].
LA - eng
UR - http://eudml.org/doc/267733
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263-269, 1992. 
  3. [3] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  4. [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  5. [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  6. [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  7. [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  8. [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  9. [9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. FormalizedMathematics, 13(4):577-580, 2005. 
  10. [10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.[Crossref] 
  11. [11] Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences. Formalized Mathematics, 11(3):249-253, 2003. 
  12. [12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. FormalizedMathematics, 9(2):281-284, 2001. 
  13. [13] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990. 
  14. [14] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.[Crossref] 
  15. [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990. 
  16. [16] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space. Formalized Mathematics, 19(1):17-22, 2011, doi: 10.2478/v10037-011-0003-8.[Crossref] Zbl1276.26025
  17. [17] Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. Riemann integral of functions from R into n-dimensional real normed space. Formalized Mathematics, 20(1):79-86, 2012, doi: 10.2478/v10037-012-0011-3.[Crossref] Zbl1276.26026
  18. [18] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rn. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.[Crossref] 
  19. [19] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.[Crossref] Zbl1276.26006
  20. [20] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997. 
  21. [21] Takaya Nishiyama, Artur Korniłowicz, and Yasunari Shidama. The uniform continuity of functions on normed linear spaces. Formalized Mathematics, 12(3):277-279, 2004. 
  22. [22] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004. 
  23. [23] Hiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces. Formalized Mathematics, 19(2):69-72, 2011, doi: 10.2478/v10037-011-0012-7.[Crossref] Zbl1276.26035
  24. [24] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011, doi: 10.2478/v10037-011-0008-3.[Crossref] Zbl1276.46063
  25. [25] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  26. [26] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. FormalizedMathematics, 1(4):797-801, 1990. 
  27. [27] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  28. [28] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997. 
  29. [29] Laurent Schwartz. Cours d’analyse II, Ch. 5. HERMANN, Paris, 1967.[WoS] Zbl0171.01301
  30. [30] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004. 
  31. [31] Yasumasa Suzuki. Banach space of bounded real sequences. Formalized Mathematics, 12(2):77-83, 2004. 
  32. [32] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  33. [33] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  34. [34] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  35. [35] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. FormalizedMathematics, 1(2):297-301, 1990. 
  36. [36] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  37. [37] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  38. [38] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  39. [39] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.