Pairs of k -step reachability and m -step observability matrices

Augusto Ferrante; Harald K. Wimmer

Special Matrices (2013)

  • Volume: 1, page 25-27
  • ISSN: 2300-7451

Abstract

top
Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).

How to cite

top

Augusto Ferrante, and Harald K. Wimmer. " Pairs of k -step reachability and m -step observability matrices ." Special Matrices 1 (2013): 25-27. <http://eudml.org/doc/267506>.

@article{AugustoFerrante2013,
abstract = {Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).},
author = {Augusto Ferrante, Harald K. Wimmer},
journal = {Special Matrices},
keywords = {Reachability matrix; observability matrix; generalized inverses; common solutions; reachability matrix},
language = {eng},
pages = {25-27},
title = { Pairs of k -step reachability and m -step observability matrices },
url = {http://eudml.org/doc/267506},
volume = {1},
year = {2013},
}

TY - JOUR
AU - Augusto Ferrante
AU - Harald K. Wimmer
TI - Pairs of k -step reachability and m -step observability matrices
JO - Special Matrices
PY - 2013
VL - 1
SP - 25
EP - 27
AB - Let V and W be matrices of size n × pk and qm × n, respectively. A necessary and sufficient condition is given for the existence of a triple (A,B,C) such that V a k-step reachability matrix of (A,B) andW an m-step observability matrix of (A,C).
LA - eng
KW - Reachability matrix; observability matrix; generalized inverses; common solutions; reachability matrix
UR - http://eudml.org/doc/267506
ER -

References

top
  1. [1] A. Ben-Israel and Th. N. E. Greville, Generalized Inverses, Theory and Applications, 2nd edition, Springer, New York, 2003. Zbl1026.15004
  2. [2] F. Cecioni, Sopra operazioni algebriche, Ann. Scuola Nom. Sup. Pisa Sci. Fis. Mat. 11 (1910), 17–20. 
  3. [3] M. Dahleh, M. A. Dahleh, and G. Verghese, Lectures on Dynamic Systems and Control, MIT Lectures, 2004. Available online: web.mit.edu/6.241/www/chapter_22.pdf web.mit.edu/6.241/www/chapter_26.pdf 
  4. [4] B. De Schutter, Minimal state-space realization in linear system theory: An overview, J. Comput. Appl. Math. 121 (2000) , 331–354. Zbl0963.93008
  5. [5] A. Ferrante and H. K. Wimmer, Reachability matrices and cyclic matrices, Electron. J. Linear Algebra 20 (2010), 95–102. Zbl1198.15009
  6. [6] E. W. Kamen, P. P. Khargonekar, and K. R. Poolla, A transfer function approach to linear time-varying discrete-time systems, SIAM J. Control Optim. 23 (1985), 550–565. [Crossref] Zbl0626.93039
  7. [7] S. J. Qin, An overview of subspace identification, Comput. Chem. Eng. 30 (2006), 1502–1513. [Crossref] 
  8. [8] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971. Zbl0236.15004
  9. [9] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edition., Springer, New York, 1998. Zbl0945.93001
  10. [10] A. J. Tether, Construction of minimal linear state-variable models from finite input-output data, IEEE Trans. Automat. Control. 15 (1970), 427–436. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.