Central limit theorem for an additive functional of a Markov process, stable in the Wesserstein metric
Annales UMCS, Mathematica (2008)
- Volume: 62, Issue: 1, page 149-159
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topReferences
top- Billingsley, P., Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201
- Dudley, R. M., Real Analysis and Probability, Wadsworth Inc., Belmont, 1989. Zbl0686.60001
- Dunford, N., Schwartz, J. T., Linear Operators, Interscience Publishers, Inc., New York, 1958.
- Ethier, S., Kurtz, T., Markov Processes, Wiley & Sons, New York, 1986.
- Helland, I. S., Central limit theorems for martingales with discrete or continuous time, Scand. J. Statist. 9 (1982), 79-94. Zbl0486.60023
- Kipnis, C., Varadhan, S. R. S., Central limit theorem for additive functionals of reversible Markov process and applications to simple exclusions, Comm. Math. Phys. 104 (1986), 1-19. Zbl0588.60058
- Meyn, S. P., Tweedie, R. L., Computable bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 4 (1994), 981-1011. Zbl0812.60059
- Sethuraman, S., Varadhan, S. R. S. and Yau, H. T., Diffusive limit of a tagged particle in asymmetric exclusion process, Comm. Pure Appl. Math. 53 (2000), 972-1006. Zbl1029.60084
- Wu, L., Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), 121-141. Zbl0936.60037