Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes

Liming Wu

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 2, page 121-141
  • ISSN: 0246-0203

How to cite

top

Wu, Liming. "Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 121-141. <http://eudml.org/doc/77625>.

@article{Wu1999,
author = {Wu, Liming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {forward-backard martingale decomposition; Donsker's invariance principle; Strassen's strong invariance principle},
language = {eng},
number = {2},
pages = {121-141},
publisher = {Gauthier-Villars},
title = {Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes},
url = {http://eudml.org/doc/77625},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Wu, Liming
TI - Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 121
EP - 141
LA - eng
KW - forward-backard martingale decomposition; Donsker's invariance principle; Strassen's strong invariance principle
UR - http://eudml.org/doc/77625
ER -

References

top
  1. [De] A. Dembo, Moderate deviations for martingales with bounded jumps, Elect. Comm. in Proba., Vol. 1, 1996, pp. 11-17. Zbl0854.60027MR1386290
  2. [DS] J.D. Deuschel and D.W. Stroock, Large deviations, Pure and Appl. Math., Vol. 137, 1989, Academic Press. Zbl0705.60029MR997938
  3. [G] S. Goldstein, Anti-symmetric functionals of reversible Markov processes, Annales d'Inst. H. Poincaré probabilités, Vol. 31, 1 (in Memoriam C. Kipnis), 1995, pp. 177-190. Zbl0813.60023MR1340036
  4. [HH] P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application, Academic Press, 1980. Zbl0462.60045MR624435
  5. [Ka] T. Kato, Perturbation Theory For Linear Operators, 2nd ed. (2nd corrected printing), Springer-Berlin, 1984. Zbl0531.47014MR1335452
  6. [KV] C. Kipnis and S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., Vol. 104, 1986, pp. 1-19. Zbl0588.60058MR834478
  7. [LZ] T.J. Lyons and W.A. Zheng, A crossing estimate for the canonical process on a Dirichlet space and a tightness result, Astérique, Vol. 157-158 (Colloque P. Lévy) 1988, pp. 249-271. Zbl0654.60059
  8. [MR] Z.M. Ma and M. Röckner, An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992. Zbl0826.31001MR1214375
  9. [MZ] P.A. Meyer and W.A. Zheng, Construction du processus de Nelson reversible, Sém. Probab. XIX, Lect. Notes in Math., No 1123, 1984, pp. 12-26. Zbl0564.60075
  10. [OS] H. Osada and T. Saitoh, An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains, Proba. Theory and R.F., Vol. 101, 1995, pp. 45-63. Zbl0816.60079MR1314174
  11. [Va] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Annals de l'I.H.P., Série Probab. and Stat., Vol. 31, 1 (in Memoriam C. Kipnis), 1995, pp. 273-285. Zbl0816.60093MR1340041
  12. [WI] L. Wu, Functional limit theorems for additive functionals of reversible Markov processes, Pré-publication du Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 1995. 
  13. [W2] L. Wu, Some notes on CLT for additive functionals of Markov processes, Prépublication du Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 1995. 
  14. [Xu] L. Xu, Ph.D. dissertation, New York University, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.