Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes

Liming Wu

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 2, page 121-141
  • ISSN: 0246-0203

How to cite

top

Wu, Liming. "Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 121-141. <http://eudml.org/doc/77625>.

@article{Wu1999,
author = {Wu, Liming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {forward-backard martingale decomposition; Donsker's invariance principle; Strassen's strong invariance principle},
language = {eng},
number = {2},
pages = {121-141},
publisher = {Gauthier-Villars},
title = {Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes},
url = {http://eudml.org/doc/77625},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Wu, Liming
TI - Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 121
EP - 141
LA - eng
KW - forward-backard martingale decomposition; Donsker's invariance principle; Strassen's strong invariance principle
UR - http://eudml.org/doc/77625
ER -

References

top
  1. [De] A. Dembo, Moderate deviations for martingales with bounded jumps, Elect. Comm. in Proba., Vol. 1, 1996, pp. 11-17. Zbl0854.60027MR1386290
  2. [DS] J.D. Deuschel and D.W. Stroock, Large deviations, Pure and Appl. Math., Vol. 137, 1989, Academic Press. Zbl0705.60029MR997938
  3. [G] S. Goldstein, Anti-symmetric functionals of reversible Markov processes, Annales d'Inst. H. Poincaré probabilités, Vol. 31, 1 (in Memoriam C. Kipnis), 1995, pp. 177-190. Zbl0813.60023MR1340036
  4. [HH] P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application, Academic Press, 1980. Zbl0462.60045MR624435
  5. [Ka] T. Kato, Perturbation Theory For Linear Operators, 2nd ed. (2nd corrected printing), Springer-Berlin, 1984. Zbl0531.47014MR1335452
  6. [KV] C. Kipnis and S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., Vol. 104, 1986, pp. 1-19. Zbl0588.60058MR834478
  7. [LZ] T.J. Lyons and W.A. Zheng, A crossing estimate for the canonical process on a Dirichlet space and a tightness result, Astérique, Vol. 157-158 (Colloque P. Lévy) 1988, pp. 249-271. Zbl0654.60059
  8. [MR] Z.M. Ma and M. Röckner, An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992. Zbl0826.31001MR1214375
  9. [MZ] P.A. Meyer and W.A. Zheng, Construction du processus de Nelson reversible, Sém. Probab. XIX, Lect. Notes in Math., No 1123, 1984, pp. 12-26. Zbl0564.60075
  10. [OS] H. Osada and T. Saitoh, An invariance principle for non-symmetric Markov processes and reflecting diffusions in random domains, Proba. Theory and R.F., Vol. 101, 1995, pp. 45-63. Zbl0816.60079MR1314174
  11. [Va] S.R.S. Varadhan, Self diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion, Annals de l'I.H.P., Série Probab. and Stat., Vol. 31, 1 (in Memoriam C. Kipnis), 1995, pp. 273-285. Zbl0816.60093MR1340041
  12. [WI] L. Wu, Functional limit theorems for additive functionals of reversible Markov processes, Pré-publication du Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 1995. 
  13. [W2] L. Wu, Some notes on CLT for additive functionals of Markov processes, Prépublication du Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 1995. 
  14. [Xu] L. Xu, Ph.D. dissertation, New York University, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.