Elementary examples of Loewner chains generated by densities
Annales UMCS, Mathematica (2013)
- Volume: 67, Issue: 1, page 83-101
- ISSN: 2083-7402
Access Full Article
topAbstract
topHow to cite
topAlan Sola. "Elementary examples of Loewner chains generated by densities." Annales UMCS, Mathematica 67.1 (2013): 83-101. <http://eudml.org/doc/267779>.
@article{AlanSola2013,
abstract = {We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.},
author = {Alan Sola},
journal = {Annales UMCS, Mathematica},
keywords = {Loewner equation; starlike functions; absolutely continuous driving measures; growth processes; corners and cusps},
language = {eng},
number = {1},
pages = {83-101},
title = {Elementary examples of Loewner chains generated by densities},
url = {http://eudml.org/doc/267779},
volume = {67},
year = {2013},
}
TY - JOUR
AU - Alan Sola
TI - Elementary examples of Loewner chains generated by densities
JO - Annales UMCS, Mathematica
PY - 2013
VL - 67
IS - 1
SP - 83
EP - 101
AB - We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.
LA - eng
KW - Loewner equation; starlike functions; absolutely continuous driving measures; growth processes; corners and cusps
UR - http://eudml.org/doc/267779
ER -
References
top- [1] Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. Zbl0382.47017
- [2] Bracci, F., Contreras, M. D., D´ıaz-Madrigal, S., Evolution families and the Loewnerequation I: the unit disk, J. Reine Angew. Math., to appear.
- [3] Bracci, F., Contreras, M. D., D´ıaz-Madrigal, S., Regular poles and β-numbers in thetheory of holomorphic semigroups, arxiv.org/abs/1201.4705.
- [4] Carleson, L., Makarov, N., Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), 583-607. Zbl1042.82039
- [5] Carleson, L., Makarov, N., Laplacian path models. Dedicated to the memory ofThomas H. Wolff, J. Anal. Math. 87 (2002), 103-150. Zbl1040.30011
- [6] Contreras, M. D., D´ıaz-Madrigal, S., Gumenyuk, P., Geometry behind Loewnerchains, Complex Anal. Oper. Theory 4 (2010), 541-587. Zbl1209.30010
- [7] Contreras, M. D., D´ıaz-Madrigal, S., Gumenyuk, P., Local duality in Loewner equations, arxiv.org/abs/1202.2334. Zbl1316.30025
- [8] Contreras, M. D., D´ıaz-Madrigal, S., Pommerenke, Ch., On boundary critical pointsfor semigroups of analytic functions, Math. Scand. 98 (2006), 125-142. Zbl1143.30013
- [9] Dur´an, M. A., Vasconcelos, G. L., Interface growth in two dimensions: A Loewnerequation approach, Phys. Rev. E 82 (2010), 031601.
- [10] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems, Birkh¨auser Verlag, Basel, 2010. Zbl1198.37001
- [11] Gubiec, T., Szymczak, P., Fingered growth in channel geometry: A Loewner equationapproach, Phys. Rev. E 77 (2008), 041602.
- [12] Hastings, M., Levitov, L., Laplacian growth as one-dimensional turbulence, Phys. D: Nonlinear Phenomena 116 (1998), 244-252. Zbl0962.76542
- [13] Ivanov, G., Prokhorov, D., Vasil’ev, A., Singular solutions to the Loewner equation, Bull. Sci. Math. 136 (2012), 328-341.
- [14] Johansson Viklund, F., Sola, A., Turner, A., Scaling limits of anisotropic Hastings-Levitov clusters, Ann. Inst. H. Poincar´e Probab. Stat. 48 (2012), 235-257. Zbl1251.82025
- [15] Kager, W., Nienhuis, B., Kadanoff, L. P., Exact solutions for Loewner evolutions, J. Statist. Phys. 115 (2004), 805-822. Zbl1056.30005
- [16] Kuznetsov, A., Boundary behaviour of Loewner chains, arxiv.org/abs/0705.4564.
- [17] Lawler, G., Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, 2005. Zbl1074.60002
- [18] Lind, J., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math. 30 (2005), 143-158. Zbl1069.30012
- [19] Lind, J., Marshall, D. E., Rohde, S., Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), 527-573.[WoS] Zbl1206.30024
- [20] Marshall, D. E., Rohde, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc. 18 (2005), 763-778. Zbl1078.30005
- [21] Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, G¨ottingen, 1975.
- [22] Pommerenke, Ch., Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin- Heidelberg, 1992. Zbl0534.30008
- [23] Popescu, M. N., Hentschel, H. G. E., Family, F., Anisotropic diffusion-limited aggregation, Phys. Rev. E 69 (2004), 061403.
- [24] Rohde, S., Zinsmeister, M., Some remarks on Laplacian growth, Topology Appl. 152 (2005), 26-43. Zbl1077.60040
- [25] Selander, G., Two deterministic growth models related to diffusion-limited aggregation. Doctoral dissertation, Thesis (Dr. Tech.), Kungliga Tekniska Hogskolan, 1999, pp. 101.
- [26] Siskakis, A. G., Semi-groups of composition operators on spaces of analytic functions,a review, Studies on composition operators (Laramie, WY, 1996), 229-252, Contemp. Math., 213, Amer. Math. Soc., Providence, R.I., 1998. Zbl0904.47030
- [27] Vasil’ev, A., Evolution of conformal maps with quasiconformal extensions, Bull. Sci. Math. 129 (2005), 831-859.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.