Elementary examples of Loewner chains generated by densities

Alan Sola

Annales UMCS, Mathematica (2013)

  • Volume: 67, Issue: 1, page 83-101
  • ISSN: 2083-7402

Abstract

top
We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.

How to cite

top

Alan Sola. "Elementary examples of Loewner chains generated by densities." Annales UMCS, Mathematica 67.1 (2013): 83-101. <http://eudml.org/doc/267779>.

@article{AlanSola2013,
abstract = {We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.},
author = {Alan Sola},
journal = {Annales UMCS, Mathematica},
keywords = {Loewner equation; starlike functions; absolutely continuous driving measures; growth processes; corners and cusps},
language = {eng},
number = {1},
pages = {83-101},
title = {Elementary examples of Loewner chains generated by densities},
url = {http://eudml.org/doc/267779},
volume = {67},
year = {2013},
}

TY - JOUR
AU - Alan Sola
TI - Elementary examples of Loewner chains generated by densities
JO - Annales UMCS, Mathematica
PY - 2013
VL - 67
IS - 1
SP - 83
EP - 101
AB - We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.
LA - eng
KW - Loewner equation; starlike functions; absolutely continuous driving measures; growth processes; corners and cusps
UR - http://eudml.org/doc/267779
ER -

References

top
  1. [1] Berkson, E., Porta, H., Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. Zbl0382.47017
  2. [2] Bracci, F., Contreras, M. D., D´ıaz-Madrigal, S., Evolution families and the Loewnerequation I: the unit disk, J. Reine Angew. Math., to appear. 
  3. [3] Bracci, F., Contreras, M. D., D´ıaz-Madrigal, S., Regular poles and β-numbers in thetheory of holomorphic semigroups, arxiv.org/abs/1201.4705. 
  4. [4] Carleson, L., Makarov, N., Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), 583-607. Zbl1042.82039
  5. [5] Carleson, L., Makarov, N., Laplacian path models. Dedicated to the memory ofThomas H. Wolff, J. Anal. Math. 87 (2002), 103-150. Zbl1040.30011
  6. [6] Contreras, M. D., D´ıaz-Madrigal, S., Gumenyuk, P., Geometry behind Loewnerchains, Complex Anal. Oper. Theory 4 (2010), 541-587. Zbl1209.30010
  7. [7] Contreras, M. D., D´ıaz-Madrigal, S., Gumenyuk, P., Local duality in Loewner equations, arxiv.org/abs/1202.2334. Zbl1316.30025
  8. [8] Contreras, M. D., D´ıaz-Madrigal, S., Pommerenke, Ch., On boundary critical pointsfor semigroups of analytic functions, Math. Scand. 98 (2006), 125-142. Zbl1143.30013
  9. [9] Dur´an, M. A., Vasconcelos, G. L., Interface growth in two dimensions: A Loewnerequation approach, Phys. Rev. E 82 (2010), 031601. 
  10. [10] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems, Birkh¨auser Verlag, Basel, 2010. Zbl1198.37001
  11. [11] Gubiec, T., Szymczak, P., Fingered growth in channel geometry: A Loewner equationapproach, Phys. Rev. E 77 (2008), 041602. 
  12. [12] Hastings, M., Levitov, L., Laplacian growth as one-dimensional turbulence, Phys. D: Nonlinear Phenomena 116 (1998), 244-252. Zbl0962.76542
  13. [13] Ivanov, G., Prokhorov, D., Vasil’ev, A., Singular solutions to the Loewner equation, Bull. Sci. Math. 136 (2012), 328-341. 
  14. [14] Johansson Viklund, F., Sola, A., Turner, A., Scaling limits of anisotropic Hastings-Levitov clusters, Ann. Inst. H. Poincar´e Probab. Stat. 48 (2012), 235-257. Zbl1251.82025
  15. [15] Kager, W., Nienhuis, B., Kadanoff, L. P., Exact solutions for Loewner evolutions, J. Statist. Phys. 115 (2004), 805-822. Zbl1056.30005
  16. [16] Kuznetsov, A., Boundary behaviour of Loewner chains, arxiv.org/abs/0705.4564. 
  17. [17] Lawler, G., Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, 2005. Zbl1074.60002
  18. [18] Lind, J., A sharp condition for the Loewner equation to generate slits, Ann. Acad. Sci. Fenn. Math. 30 (2005), 143-158. Zbl1069.30012
  19. [19] Lind, J., Marshall, D. E., Rohde, S., Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), 527-573.[WoS] Zbl1206.30024
  20. [20] Marshall, D. E., Rohde, S., The Loewner differential equation and slit mappings, J. Amer. Math. Soc. 18 (2005), 763-778. Zbl1078.30005
  21. [21] Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, G¨ottingen, 1975. 
  22. [22] Pommerenke, Ch., Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin- Heidelberg, 1992. Zbl0534.30008
  23. [23] Popescu, M. N., Hentschel, H. G. E., Family, F., Anisotropic diffusion-limited aggregation, Phys. Rev. E 69 (2004), 061403. 
  24. [24] Rohde, S., Zinsmeister, M., Some remarks on Laplacian growth, Topology Appl. 152 (2005), 26-43. Zbl1077.60040
  25. [25] Selander, G., Two deterministic growth models related to diffusion-limited aggregation. Doctoral dissertation, Thesis (Dr. Tech.), Kungliga Tekniska Hogskolan, 1999, pp. 101. 
  26. [26] Siskakis, A. G., Semi-groups of composition operators on spaces of analytic functions,a review, Studies on composition operators (Laramie, WY, 1996), 229-252, Contemp. Math., 213, Amer. Math. Soc., Providence, R.I., 1998. Zbl0904.47030
  27. [27] Vasil’ev, A., Evolution of conformal maps with quasiconformal extensions, Bull. Sci. Math. 129 (2005), 831-859. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.