The irregularity of graphs under graph operations

Hosam Abdo; Darko Dimitrov

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 2, page 263-278
  • ISSN: 2083-5892

Abstract

top
The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations

How to cite

top

Hosam Abdo, and Darko Dimitrov. "The irregularity of graphs under graph operations." Discussiones Mathematicae Graph Theory 34.2 (2014): 263-278. <http://eudml.org/doc/268138>.

@article{HosamAbdo2014,
abstract = {The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations},
author = {Hosam Abdo, Darko Dimitrov},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {irregularity of graphs; total irregularity of graphs; graph operations; Zagreb indices},
language = {eng},
number = {2},
pages = {263-278},
title = {The irregularity of graphs under graph operations},
url = {http://eudml.org/doc/268138},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Hosam Abdo
AU - Darko Dimitrov
TI - The irregularity of graphs under graph operations
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 2
SP - 263
EP - 278
AB - The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations
LA - eng
KW - irregularity of graphs; total irregularity of graphs; graph operations; Zagreb indices
UR - http://eudml.org/doc/268138
ER -

References

top
  1. [1] H. Abdo and D. Dimitrov, Total irregularity of a graph, (2012) a manuscript. arxiv.org/abs/1207.5267 Zbl1313.05313
  2. [2] Y. Alavi, A. Boals, G. Chartrand, P. Erdös and O.R. Oellermann, k-path irregular graphs, Congr. Numer. 65 (1988) 201-210. Zbl0669.05046
  3. [3] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdös, R.L. Graham and O.R. Oeller- mann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249. doi:10.1002/jgt.3190110214[Crossref] 
  4. [4] Y. Alavi, J. Liu and J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10. doi:10.1016/0012-365X(93)90134-F[Crossref] 
  5. [5] M.O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219-225. Zbl0933.05073
  6. [6] M.O. Albertson and D. Berman, Ramsey graphs without repeated degrees, Congr. Numer. 83 (1991) 91-96. Zbl0765.05073
  7. [7] F.K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45-54. doi:10.1016/0024-3795(92)90004-T[Crossref] 
  8. [8] F.K. Bell, On the maximal index of connected graphs, Linear Algebra Appl. 144 (1991) 135-151. doi:10.1016/0024-3795(91)90067-7[Crossref] 
  9. [9] G. Chartrand, P. Erd˝os and O.R. Oellermann, How to define an irregular graph, College Math. J. 19 (1988) 36-42. doi:10.2307/2686701[Crossref] Zbl0995.05516
  10. [10] G. Chartrand, K.S. Holbert, O.R. Oellermann and H.C. Swart, F-degrees in graphs, Ars Combin. 24 (1987) 133-148. Zbl0643.05055
  11. [11] G. Chen, P. Erd˝os, C. Rousseau and R. Schelp, Ramsey problems involving degrees in edge-colored complete graphs of vertices belonging to monochromatic subgraphs, European J. Combin. 14 (1993) 183-189. doi:10.1006/eujc.1993.1023[Crossref] 
  12. [12] L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Semin. Univ. Hamburg 21 (1957) 63-77. doi:10.1007/BF02941924[Crossref] Zbl0077.36704
  13. [13] D. Cvetkovi´c and P. Rowlinson, On connected graphs with maximal index , Publica- tions de l’Institut Mathematique Beograd 44 (1988) 29-34. 
  14. [14] K.C. Das and I. Gutman, Some properties of the second Zagreb index , MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112. Zbl1077.05094
  15. [15] T. Došli´c, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex degree based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626. Zbl1265.05144
  16. [16] G.H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84. 
  17. [17] I. Gutman and K.C. Das, The first Zagreb index 30 years after , MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92. Zbl1053.05115
  18. [18] I. Gutman, P. Hansen and H. M´elot, Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical trees, J. Chem. Inf. Model. 45 (2005) 222-230. doi:10.1021/ci0342775[Crossref] 
  19. [19] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs (CRC Press, Boca Raton, FL, 2011). Zbl1283.05001
  20. [20] P. Hansen and H.M´elot, Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 (2005) 253-264. Zbl1095.05019
  21. [21] M.A. Henning and D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math. 307 (2007) 1467-1472.[WoS] Zbl1126.05060
  22. [22] D.E. Jackson and R. Entringer, Totally segregated graphs, Congr. Numer. 55 (1986) 159-165. Zbl0633.05060
  23. [23] D.J. Miller, The categorical product of graphs, Canad. J. Math. 20 (1968) 1511-1521. doi:10.4153/CJM-1968-151-x[Crossref] Zbl0167.21902
  24. [24] S. Nikoli´c, G. Kovaˇcevi´c, A. Miliˇcevi´c and N. Trinajsti´c, The Zagreb indices 30 years after , Croat. Chem. Acta 76 (2003) 113-124. 
  25. [25] N. Trinajsti´c, S. Nikoli´c, A. Miliˇcevi´c and I. Gutman, On Zagreb indices, Kem. Ind. 59 (2010) 577-589. 
  26. [26] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52. doi:10.4153/CJM-1968-151-x[Crossref] Zbl0102.38801
  27. [27] V. Yegnanarayanan, P.R. Thiripurasundari and T. Padmavathy, On some graph operations and related applications, Electron. Notes Discrete Math. 33 (2009) 123-130. doi:10.1016/j.endm.2009.03.018[Crossref] Zbl1267.05226
  28. [28] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 591-596. Zbl1141.05027
  29. [29] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem 54 (2005) 233-239. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.