The irregularity of graphs under graph operations
Discussiones Mathematicae Graph Theory (2014)
- Volume: 34, Issue: 2, page 263-278
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topHosam Abdo, and Darko Dimitrov. "The irregularity of graphs under graph operations." Discussiones Mathematicae Graph Theory 34.2 (2014): 263-278. <http://eudml.org/doc/268138>.
@article{HosamAbdo2014,
abstract = {The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations},
author = {Hosam Abdo, Darko Dimitrov},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {irregularity of graphs; total irregularity of graphs; graph operations; Zagreb indices},
language = {eng},
number = {2},
pages = {263-278},
title = {The irregularity of graphs under graph operations},
url = {http://eudml.org/doc/268138},
volume = {34},
year = {2014},
}
TY - JOUR
AU - Hosam Abdo
AU - Darko Dimitrov
TI - The irregularity of graphs under graph operations
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 2
SP - 263
EP - 278
AB - The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations
LA - eng
KW - irregularity of graphs; total irregularity of graphs; graph operations; Zagreb indices
UR - http://eudml.org/doc/268138
ER -
References
top- [1] H. Abdo and D. Dimitrov, Total irregularity of a graph, (2012) a manuscript. arxiv.org/abs/1207.5267 Zbl1313.05313
- [2] Y. Alavi, A. Boals, G. Chartrand, P. Erdös and O.R. Oellermann, k-path irregular graphs, Congr. Numer. 65 (1988) 201-210. Zbl0669.05046
- [3] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdös, R.L. Graham and O.R. Oeller- mann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249. doi:10.1002/jgt.3190110214[Crossref]
- [4] Y. Alavi, J. Liu and J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10. doi:10.1016/0012-365X(93)90134-F[Crossref]
- [5] M.O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219-225. Zbl0933.05073
- [6] M.O. Albertson and D. Berman, Ramsey graphs without repeated degrees, Congr. Numer. 83 (1991) 91-96. Zbl0765.05073
- [7] F.K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45-54. doi:10.1016/0024-3795(92)90004-T[Crossref]
- [8] F.K. Bell, On the maximal index of connected graphs, Linear Algebra Appl. 144 (1991) 135-151. doi:10.1016/0024-3795(91)90067-7[Crossref]
- [9] G. Chartrand, P. Erd˝os and O.R. Oellermann, How to define an irregular graph, College Math. J. 19 (1988) 36-42. doi:10.2307/2686701[Crossref] Zbl0995.05516
- [10] G. Chartrand, K.S. Holbert, O.R. Oellermann and H.C. Swart, F-degrees in graphs, Ars Combin. 24 (1987) 133-148. Zbl0643.05055
- [11] G. Chen, P. Erd˝os, C. Rousseau and R. Schelp, Ramsey problems involving degrees in edge-colored complete graphs of vertices belonging to monochromatic subgraphs, European J. Combin. 14 (1993) 183-189. doi:10.1006/eujc.1993.1023[Crossref]
- [12] L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Semin. Univ. Hamburg 21 (1957) 63-77. doi:10.1007/BF02941924[Crossref] Zbl0077.36704
- [13] D. Cvetkovi´c and P. Rowlinson, On connected graphs with maximal index , Publica- tions de l’Institut Mathematique Beograd 44 (1988) 29-34.
- [14] K.C. Das and I. Gutman, Some properties of the second Zagreb index , MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112. Zbl1077.05094
- [15] T. Došli´c, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex degree based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626. Zbl1265.05144
- [16] G.H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.
- [17] I. Gutman and K.C. Das, The first Zagreb index 30 years after , MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92. Zbl1053.05115
- [18] I. Gutman, P. Hansen and H. M´elot, Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical trees, J. Chem. Inf. Model. 45 (2005) 222-230. doi:10.1021/ci0342775[Crossref]
- [19] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs (CRC Press, Boca Raton, FL, 2011). Zbl1283.05001
- [20] P. Hansen and H.M´elot, Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 (2005) 253-264. Zbl1095.05019
- [21] M.A. Henning and D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math. 307 (2007) 1467-1472.[WoS] Zbl1126.05060
- [22] D.E. Jackson and R. Entringer, Totally segregated graphs, Congr. Numer. 55 (1986) 159-165. Zbl0633.05060
- [23] D.J. Miller, The categorical product of graphs, Canad. J. Math. 20 (1968) 1511-1521. doi:10.4153/CJM-1968-151-x[Crossref] Zbl0167.21902
- [24] S. Nikoli´c, G. Kovaˇcevi´c, A. Miliˇcevi´c and N. Trinajsti´c, The Zagreb indices 30 years after , Croat. Chem. Acta 76 (2003) 113-124.
- [25] N. Trinajsti´c, S. Nikoli´c, A. Miliˇcevi´c and I. Gutman, On Zagreb indices, Kem. Ind. 59 (2010) 577-589.
- [26] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52. doi:10.4153/CJM-1968-151-x[Crossref] Zbl0102.38801
- [27] V. Yegnanarayanan, P.R. Thiripurasundari and T. Padmavathy, On some graph operations and related applications, Electron. Notes Discrete Math. 33 (2009) 123-130. doi:10.1016/j.endm.2009.03.018[Crossref] Zbl1267.05226
- [28] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 591-596. Zbl1141.05027
- [29] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem 54 (2005) 233-239.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.