Packing Trees Into n-Chromatic Graphs

András Gyárfás

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 1, page 199-201
  • ISSN: 2083-5892

Abstract

top
We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.

How to cite

top

András Gyárfás. "Packing Trees Into n-Chromatic Graphs." Discussiones Mathematicae Graph Theory 34.1 (2014): 199-201. <http://eudml.org/doc/268205>.

@article{AndrásGyárfás2014,
abstract = {We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.},
author = {András Gyárfás},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {tree packing},
language = {eng},
number = {1},
pages = {199-201},
title = {Packing Trees Into n-Chromatic Graphs},
url = {http://eudml.org/doc/268205},
volume = {34},
year = {2014},
}

TY - JOUR
AU - András Gyárfás
TI - Packing Trees Into n-Chromatic Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 1
SP - 199
EP - 201
AB - We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.
LA - eng
KW - tree packing
UR - http://eudml.org/doc/268205
ER -

References

top
  1. [1] D. Gerbner, B. Keszegh and C. Palmer, Generalizations of the tree packing conjecture, Discuss. Math. Graph Theory 32 (2012) 569-582. doi:10.7151/dmgt.1628[Crossref] Zbl1257.05129
  2. [2] D. Gerbner, B. Keszegh and C. Palmer, Red-blue alternating paths, Third Emléktábla Workshop, p.25. http://www.renyi.hu/emlektab/index/booklet.html 
  3. [3] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Combinatorics, Proc. Fifth Hungarian Coll. Keszthely, 1976, Vol II. North Holland. Colloq. Math. Soc. J. Bolyai 18 463-469. Zbl0389.05030
  4. [4] A. Gyárfás, E. Szemerédi and Zs. Tuza, Induced subtrees in graphs of large chromatic number , Discrete Math. 30 (1980) 235-244. doi:10.1016/0012-365X(80)90230-7[Crossref] Zbl0475.05027
  5. [5] S. Zaks and C.L. Liu, Decomposition of graphs into trees, Proceedings of 8-th South- eastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La. Util. Math., Congr. Numer. XIX (1977) 643-654. 

NotesEmbed ?

top

You must be logged in to post comments.