Displaying similar documents to “Packing Trees Into n-Chromatic Graphs”

Graphs with 4-Rainbow Index 3 and n − 1

Xueliang Li, Ingo Schiermeyer, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V (G) is called the k-rainbow index of G, denoted...

The 3-Rainbow Index of a Graph

Lily Chen, Xueliang Li, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G)....

Graphs with 3-Rainbow Index n − 1 and n − 2

Xueliang Li, Ingo Schiermeyer, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V (G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of...

Upper Bounds for the Strong Chromatic Index of Halin Graphs

Ziyu Hu, Ko-Wei Lih, Daphne Der-Fen Liu (2018)

Discussiones Mathematicae Graph Theory

Similarity:

The strong chromatic index of a graph G, denoted by χ′s(G), is the minimum number of vertex induced matchings needed to partition the edge set of G. Let T be a tree without vertices of degree 2 and have at least one vertex of degree greater than 2. We construct a Halin graph G by drawing T on the plane and then drawing a cycle C connecting all its leaves in such a way that C forms the boundary of the unbounded face. We call T the characteristic tree of G. Let G denote a Halin graph with...

A Note on Uniquely Embeddable Forests

Justyna Otfinowska, Mariusz Woźniak (2013)

Discussiones Mathematicae Graph Theory

Similarity:

Let F be a forest of order n. It is well known that if F 6= Sn, a star of order n, then there exists an embedding of F into its complement F. In this note we consider a problem concerning the uniqueness of such an embedding.

Weak Saturation Numbers for Sparse Graphs

Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson (2013)

Discussiones Mathematicae Graph Theory

Similarity:

For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs...