Some theorems of Scorza-Dragoni type for multifunctions with application to the problem of existence of solutions for differential multivalued equations
Stanisław Łojasiewicz, jr. (1985)
Banach Center Publications
Similarity:
Stanisław Łojasiewicz, jr. (1985)
Banach Center Publications
Similarity:
Gabriele Bonanno (1989)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
We point out two theorems on the Scorza Dragoni property for multifunctions. As an application, in particular, we improve a Carathéodory selection theorem by A. Cellina [4], by removing a compactness assumption.
Gabriele Bonanno (1989)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
We point out two theorems on the Scorza Dragoni property for multifunctions. As an application, in particular, we improve a Carathéodory selection theorem by A. Cellina [4], by removing a compactness assumption.
M.M. Marjanovic, M.M. Dresevic (1972)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
J. Appell, E. De Pascale, P. P. Zabrejko (1991)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Diego Averna, Salvatore A. Marano (1999)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Tiziana Cardinali, Lucia Santori (2011)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.
Stanisław Migórski (1995)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.
Beata Kubiś (2001)
Mathematica Bohemica
Similarity:
We investigate the problem of approximation of measurable multifunctions by monotone sequences of measurable simple ones. Our main tool is the Marczewski function, i.e., the characteristic function of a sequence of sets.