Equivariant degree of convex-valued maps applied to set-valued BVP
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 2173-2186
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topZdzisław Dzedzej. "Equivariant degree of convex-valued maps applied to set-valued BVP." Open Mathematics 10.6 (2012): 2173-2186. <http://eudml.org/doc/269357>.
@article{ZdzisławDzedzej2012,
abstract = {An equivariant degree is defined for equivariant completely continuous multivalued vector fields with compact convex values. Then it is applied to obtain a result on existence of solutions to a second order BVP for differential inclusions carrying some symmetries.},
author = {Zdzisław Dzedzej},
journal = {Open Mathematics},
keywords = {Equivariant degree; Multivalued map; Differential inclusion; Bernstein-Nagumo conditions; equivariant degree; multivalued map; differential inclusion},
language = {eng},
number = {6},
pages = {2173-2186},
title = {Equivariant degree of convex-valued maps applied to set-valued BVP},
url = {http://eudml.org/doc/269357},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Zdzisław Dzedzej
TI - Equivariant degree of convex-valued maps applied to set-valued BVP
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2173
EP - 2186
AB - An equivariant degree is defined for equivariant completely continuous multivalued vector fields with compact convex values. Then it is applied to obtain a result on existence of solutions to a second order BVP for differential inclusions carrying some symmetries.
LA - eng
KW - Equivariant degree; Multivalued map; Differential inclusion; Bernstein-Nagumo conditions; equivariant degree; multivalued map; differential inclusion
UR - http://eudml.org/doc/269357
ER -
References
top- [1] Antonyan S.A., Balanov Z.I., Gel’man B.D., Bourgin-Yang-type theorem for a-compact perturbations of closed operators. Part I. The case of index theories with dimension property, Abstr. Appl. Anal., 2006, #78928
- [2] Balanov Z., Krawcewicz W., Rybicki S., Steinlein H., A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 2010, 8(1), 1–74 http://dx.doi.org/10.1007/s11784-010-0033-9[Crossref][WoS] Zbl1206.47057
- [3] Balanov Z., Krawcewicz W., Steinlein H., Applied Equivariant Degree, AIMS Ser. Differ. Equ. Dyn. Syst., 1, American Institute of Mathematical Sciences, Springfield, 2006 Zbl1123.47043
- [4] Borisovich Yu.G., Gel’man B.D., Myshkis A.D., Obukhovskii V.V., Introduction to the Theory of Multivalued Mappings and Differential Inclusions, URSS, Moscow, 2005 (in Russian)
- [5] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref]
- [6] Dzedzej Z., Kryszewski W., Selections and approximations of convex-valued equivariant mappings, Topol. Methods Nonlinear Anal. (in press) Zbl1296.54027
- [7] Erbe L.H., Krawcewicz W., Nonlinear boundary value problems for differential inclusions y″ ∈ F(t, y, y′), Ann. Polon. Math., 1991, 54(3), 195–226 Zbl0731.34078
- [8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht-Boston-London, 1999 Zbl0937.55001
- [9] Granas A., Guenther R., Lee J., Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Math. (Rozprawy Mat.), 244, Polish Academy of Sciences, Warsaw, 1985 Zbl0615.34010
- [10] Hofmann K.H., Morris S.A., The Structure of Compact Groups, de Gruyter Stud. Math., 25, Walter de Gruyter, Berlin, 2006
- [11] Krawcewicz W., Wu J., Theory of Degrees with Applications to Bifurcations and Differential Equations, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1997 Zbl0882.58001
- [12] Michael E., Continuous selections I, Annals of Math., 1956, 63(2), 361–382 http://dx.doi.org/10.2307/1969615[Crossref] Zbl0071.15902
- [13] Murayama M., On G-ANR’s and their G-homotopy types, Osaka J. Math., 1983, 20(3), 479–512 Zbl0531.57034
- [14] Pruszko T., Topological degree methods in multivalued boundary value problems, Nonlinear Anal., 1981, 5(9), 959–973 http://dx.doi.org/10.1016/0362-546X(81)90056-0[Crossref]
- [15] Pruszko T., Some Applications of the Topological Degree Theory to Multivalued Boundary Value Problems, Dissertationes Math. (Rozprawy Mat.), 229, Polish Academy of Sciences, Warsaw, 1984
- [16] Rudin W., Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.