On the stratification of the orbit space for the action of automorphisms on connections

Witold Kondracki; Jan Rogulski

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1986

Abstract

top
CONTENTSIntroduction..................................................................................................................................................5§1. Basic notions and notation.....................................................................................................................7  1.1. Automorphisms of principal bundles....................................................................................................7  1.2. Connections and parallel translations.................................................................................................9  1.3. Symmetries and connections.............................................................................................................11§2. The action of the gauge group on connections....................................................................................14  2.1. The gauge group...............................................................................................................................14  2.2. The action of on G k + 1 on C k ................................................................................................17  2.3. Weak and strong invariant metrics on C k .....................................................................................20  2.4. The equivariant embedding of C k into the space of H k Riemannian metrics on P...................23§3. The Slice Theorem...............................................................................................................................30  3.1. The Hodge-Kodaira-like decomposition for T e Φ A ....................................................................30  3.2. The orbits are submanifolds..............................................................................................................36  3.3. The Slice Theorem............................................................................................................................38§4. The geometric structure of R k = C k / G k + 1 ..................................................................................43  4.1. Consequences of the Slice Theorem.................................................................................................44  4.2. The Countability Theorem.................................................................................................................47  4.3. Density theorems...............................................................................................................................49  4.4. The stratification of R k .................................................................................................................57References.................................................................................................................................................61

How to cite

top

Witold Kondracki, and Jan Rogulski. On the stratification of the orbit space for the action of automorphisms on connections. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1986. <http://eudml.org/doc/268369>.

@book{WitoldKondracki1986,
abstract = {CONTENTSIntroduction..................................................................................................................................................5§1. Basic notions and notation.....................................................................................................................7  1.1. Automorphisms of principal bundles....................................................................................................7  1.2. Connections and parallel translations.................................................................................................9  1.3. Symmetries and connections.............................................................................................................11§2. The action of the gauge group on connections....................................................................................14  2.1. The gauge group...............................................................................................................................14  2.2. The action of on $G^\{k+1\}$ on $C^k$................................................................................................17  2.3. Weak and strong invariant metrics on $C^k$.....................................................................................20  2.4. The equivariant embedding of $C^k$ into the space of $H^k$ Riemannian metrics on P...................23§3. The Slice Theorem...............................................................................................................................30  3.1. The Hodge-Kodaira-like decomposition for $T_e Φ_A$....................................................................30  3.2. The orbits are submanifolds..............................................................................................................36  3.3. The Slice Theorem............................................................................................................................38§4. The geometric structure of $R^k = C^k/G^\{k+1\}$..................................................................................43  4.1. Consequences of the Slice Theorem.................................................................................................44  4.2. The Countability Theorem.................................................................................................................47  4.3. Density theorems...............................................................................................................................49  4.4. The stratification of $R^k$.................................................................................................................57References.................................................................................................................................................61},
author = {Witold Kondracki, Jan Rogulski},
keywords = {orbit space of the action of the gauge group; smooth principal G-bundle; compact Lie group; space of smooth connections; stratification; Hilbert- Lie group; existence of tubular neighborhoods for the action; holonomy bundle; configuration space for Yang-Mills field theory},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On the stratification of the orbit space for the action of automorphisms on connections},
url = {http://eudml.org/doc/268369},
year = {1986},
}

TY - BOOK
AU - Witold Kondracki
AU - Jan Rogulski
TI - On the stratification of the orbit space for the action of automorphisms on connections
PY - 1986
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..................................................................................................................................................5§1. Basic notions and notation.....................................................................................................................7  1.1. Automorphisms of principal bundles....................................................................................................7  1.2. Connections and parallel translations.................................................................................................9  1.3. Symmetries and connections.............................................................................................................11§2. The action of the gauge group on connections....................................................................................14  2.1. The gauge group...............................................................................................................................14  2.2. The action of on $G^{k+1}$ on $C^k$................................................................................................17  2.3. Weak and strong invariant metrics on $C^k$.....................................................................................20  2.4. The equivariant embedding of $C^k$ into the space of $H^k$ Riemannian metrics on P...................23§3. The Slice Theorem...............................................................................................................................30  3.1. The Hodge-Kodaira-like decomposition for $T_e Φ_A$....................................................................30  3.2. The orbits are submanifolds..............................................................................................................36  3.3. The Slice Theorem............................................................................................................................38§4. The geometric structure of $R^k = C^k/G^{k+1}$..................................................................................43  4.1. Consequences of the Slice Theorem.................................................................................................44  4.2. The Countability Theorem.................................................................................................................47  4.3. Density theorems...............................................................................................................................49  4.4. The stratification of $R^k$.................................................................................................................57References.................................................................................................................................................61
LA - eng
KW - orbit space of the action of the gauge group; smooth principal G-bundle; compact Lie group; space of smooth connections; stratification; Hilbert- Lie group; existence of tubular neighborhoods for the action; holonomy bundle; configuration space for Yang-Mills field theory
UR - http://eudml.org/doc/268369
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.