The density problem for infinite dimensional group actions
S. Klimek; W. Kondracki; W. Oledzki; P. Sadowski
Compositio Mathematica (1988)
- Volume: 68, Issue: 1, page 3-10
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKlimek, S., et al. "The density problem for infinite dimensional group actions." Compositio Mathematica 68.1 (1988): 3-10. <http://eudml.org/doc/89929>.
@article{Klimek1988,
author = {Klimek, S., Kondracki, W., Oledzki, W., Sadowski, P.},
journal = {Compositio Mathematica},
keywords = {smooth action of a Hilbert-Lie group on a Hilbert manifold; slice property; orbit type; density of strata},
language = {eng},
number = {1},
pages = {3-10},
publisher = {Kluwer Academic Publishers},
title = {The density problem for infinite dimensional group actions},
url = {http://eudml.org/doc/89929},
volume = {68},
year = {1988},
}
TY - JOUR
AU - Klimek, S.
AU - Kondracki, W.
AU - Oledzki, W.
AU - Sadowski, P.
TI - The density problem for infinite dimensional group actions
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 68
IS - 1
SP - 3
EP - 10
LA - eng
KW - smooth action of a Hilbert-Lie group on a Hilbert manifold; slice property; orbit type; density of strata
UR - http://eudml.org/doc/89929
ER -
References
top- 1 Bourbaki, N.: Variétés différentielles et analytiques, Fascicule de résultats (§1-§7). Paris: Hermann (1971). Zbl0206.50402MR281115
- 2 Bourguignon, J.P.: Une stratification de l'espace des structures riemanniennes. Comp. Math.30 (1975) 1-41. Zbl0301.58015MR418147
- 3 Bredon, G.E.: Introduction to Compact Transformation Groups. New York: Academic Press (1972). Zbl0246.57017MR413144
- 4 Ebin, D.G.: The manifold of Riemannian metrics. Proc. Symp. Pure Math. Am. Math. Soc.XV (1970) 11-40. Zbl0205.53702MR267604
- 5 Ebin, D.G. and Marsedn, J.E.: Groups of diffeomorphisms and the motion of an incompressible perfect fluid. Ann. of Math.92 (1970) 102-163. Zbl0211.57401MR271984
- 6 Fisher, A.E.: The Theory of Superspace. Relativity. New York: Plenum Press (1970). MR347323
- 7 Kondracki, W. and Rogulski, J.S.: On the stratification of the orbit space for the action of automorphisms on connections. Diss. Math.250 (1986). Zbl0614.57025MR866577
- 8 Kondracki, W. and Sadowski, P.: Geometric structure on the orbit space of gauge connections. J. Geom. Phys.3 (1986) 421-434. Zbl0624.53055MR894633
- 9 Kozak, M.: On the geometry of the configuration space for Kaluza Klein field theory. Warsaw University PhD thesis, to appear.
- 10 Mitter, P.K. and Viallet, C.M.: On the bundle of connections and the gauge orbit manifold in Yang-Mills theory. Comm. Maths. Phys.79 (1981) 457-472. Zbl0474.58004MR623962
- 11 Narasimhan, M.S. and Ramadas, T.R.: Geometry of SU(2) gauge fields. Comm. Math. Phys.67 (1979) 121-136. Zbl0418.53029MR539547
- 12 Palais, R.S.: Embedding of compact differentiable transformation groups in orthogonal representations. J. Math. Mech.6 (1957) 673-678. Zbl0086.02603MR92927
- 13 Singer, I.M.: Some remarks on the Gribov ambiguity. Comm. Math. Phys.60 (1978) 7-12. Zbl0379.53009MR500248
- 14 Whitney, H.: Elementary structures of real algebraic varieties. Ann. of Math.66 (1957) 546-556. Zbl0078.13403MR95844
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.