The density problem for infinite dimensional group actions

S. Klimek; W. Kondracki; W. Oledzki; P. Sadowski

Compositio Mathematica (1988)

  • Volume: 68, Issue: 1, page 3-10
  • ISSN: 0010-437X

How to cite


Klimek, S., et al. "The density problem for infinite dimensional group actions." Compositio Mathematica 68.1 (1988): 3-10. <>.

author = {Klimek, S., Kondracki, W., Oledzki, W., Sadowski, P.},
journal = {Compositio Mathematica},
keywords = {smooth action of a Hilbert-Lie group on a Hilbert manifold; slice property; orbit type; density of strata},
language = {eng},
number = {1},
pages = {3-10},
publisher = {Kluwer Academic Publishers},
title = {The density problem for infinite dimensional group actions},
url = {},
volume = {68},
year = {1988},

AU - Klimek, S.
AU - Kondracki, W.
AU - Oledzki, W.
AU - Sadowski, P.
TI - The density problem for infinite dimensional group actions
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 68
IS - 1
SP - 3
EP - 10
LA - eng
KW - smooth action of a Hilbert-Lie group on a Hilbert manifold; slice property; orbit type; density of strata
UR -
ER -


  1. 1 Bourbaki, N.: Variétés différentielles et analytiques, Fascicule de résultats (§1-§7). Paris: Hermann (1971). Zbl0206.50402MR281115
  2. 2 Bourguignon, J.P.: Une stratification de l'espace des structures riemanniennes. Comp. Math.30 (1975) 1-41. Zbl0301.58015MR418147
  3. 3 Bredon, G.E.: Introduction to Compact Transformation Groups. New York: Academic Press (1972). Zbl0246.57017MR413144
  4. 4 Ebin, D.G.: The manifold of Riemannian metrics. Proc. Symp. Pure Math. Am. Math. Soc.XV (1970) 11-40. Zbl0205.53702MR267604
  5. 5 Ebin, D.G. and Marsedn, J.E.: Groups of diffeomorphisms and the motion of an incompressible perfect fluid. Ann. of Math.92 (1970) 102-163. Zbl0211.57401MR271984
  6. 6 Fisher, A.E.: The Theory of Superspace. Relativity. New York: Plenum Press (1970). MR347323
  7. 7 Kondracki, W. and Rogulski, J.S.: On the stratification of the orbit space for the action of automorphisms on connections. Diss. Math.250 (1986). Zbl0614.57025MR866577
  8. 8 Kondracki, W. and Sadowski, P.: Geometric structure on the orbit space of gauge connections. J. Geom. Phys.3 (1986) 421-434. Zbl0624.53055MR894633
  9. 9 Kozak, M.: On the geometry of the configuration space for Kaluza Klein field theory. Warsaw University PhD thesis, to appear. 
  10. 10 Mitter, P.K. and Viallet, C.M.: On the bundle of connections and the gauge orbit manifold in Yang-Mills theory. Comm. Maths. Phys.79 (1981) 457-472. Zbl0474.58004MR623962
  11. 11 Narasimhan, M.S. and Ramadas, T.R.: Geometry of SU(2) gauge fields. Comm. Math. Phys.67 (1979) 121-136. Zbl0418.53029MR539547
  12. 12 Palais, R.S.: Embedding of compact differentiable transformation groups in orthogonal representations. J. Math. Mech.6 (1957) 673-678. Zbl0086.02603MR92927
  13. 13 Singer, I.M.: Some remarks on the Gribov ambiguity. Comm. Math. Phys.60 (1978) 7-12. Zbl0379.53009MR500248
  14. 14 Whitney, H.: Elementary structures of real algebraic varieties. Ann. of Math.66 (1957) 546-556. Zbl0078.13403MR95844

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.