# The configuration space of gauge theory on open manifolds of bounded geometry

Banach Center Publications (1997)

- Volume: 39, Issue: 1, page 269-286
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topEichhorn, Jürgen, and Heber, Gerd. "The configuration space of gauge theory on open manifolds of bounded geometry." Banach Center Publications 39.1 (1997): 269-286. <http://eudml.org/doc/208667>.

@article{Eichhorn1997,

abstract = {We define suitable Sobolev topologies on the space $\{\mathcal \{C\}\}_P(B_k,f)$ of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.},

author = {Eichhorn, Jürgen, Heber, Gerd},

journal = {Banach Center Publications},

keywords = {space of connections; finite Yang-Mills action; gauge group; configuration space; stratified space},

language = {eng},

number = {1},

pages = {269-286},

title = {The configuration space of gauge theory on open manifolds of bounded geometry},

url = {http://eudml.org/doc/208667},

volume = {39},

year = {1997},

}

TY - JOUR

AU - Eichhorn, Jürgen

AU - Heber, Gerd

TI - The configuration space of gauge theory on open manifolds of bounded geometry

JO - Banach Center Publications

PY - 1997

VL - 39

IS - 1

SP - 269

EP - 286

AB - We define suitable Sobolev topologies on the space ${\mathcal {C}}_P(B_k,f)$ of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.

LA - eng

KW - space of connections; finite Yang-Mills action; gauge group; configuration space; stratified space

UR - http://eudml.org/doc/208667

ER -

## References

top- [1] N. Bourbaki, Éléments de mathématique, Fasc. XXXIII, Variétés différentielles et analytiques, Fascicule de résultates (Paragraphes 1 à 7), Hermann, Paris, 1971. Zbl0206.50402
- [2] N. Bourbaki, Éléments de mathématique, Fasc. XXXVIII, Groupes et algèbres de Lie, Hermann, Paris, 1972. Zbl0244.22007
- [3] J. Eichhorn, Elliptic differential operators on noncompact manifolds, in: Seminar Analysis of the Karl-Weierstrass-Institute of Mathematics (Berlin, 1986/87), Teubner-Texte Math. 106, Leipzig, 1988, 4-169.
- [4] J. Eichhorn, Gauge theory on open manifolds of bounded geometry, Internat. J. Modern Phys. A 7 (1992), 3927-3977.
- [5] J. Eichhorn, The manifold structure of maps between open manifolds, Ann. Global Anal. Geom. 11 (1993), 253-300. Zbl0840.58014
- [6] J. Eichhorn, Spaces of Riemannian metrics on open manifolds, Results Math. 27 (1995), 256-283. Zbl0833.58008
- [7] J. Eichhorn, The boundedness of connection coefficients and their derivatives, Math. Nachr. 152 (1991), 145-158. Zbl0736.53031
- [8] J. Eichhorn, Differential operators with Sobolev coefficients, in preparation.
- [9] J. Eichhorn, The invariance of Sobolev spaces over noncompact manifolds, in: Symposium 'Partial Differential Equations' (Holzhau, 1988), Teubner-Texte Math. 112, Leipzig, 1989, 73-107.
- [10] J. Eichhorn and J. Fricke, The module structure theorem for Sobolev spaces on open manifolds, Math. Nachr. (to appear). Zbl0954.46020
- [11] J. Eichhorn and R. Schmid, Form preserving diffeomorphisms on open manifolds, Math. Nachr. (to appear). Zbl0862.58007
- [12] A. E. Fischer, The internal symmetry group of a connection on a principal fibre bundle with applications to gauge field theory, Comm. Math. Phys. 113 (1987), 231-262. Zbl0638.53039
- [13] G. Heber, Die Topologie des Konfigurationsraumes der Yang-Mills Theorie über offenen Mannigfaltigkeiten beschränkter Geometrie, Ph.D. thesis, Greifswald, 1994.
- [14] W. Kondracki and J. Rogulski, On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. (Rozprawy Mat.) 250 (1986). Zbl0614.57025
- [15] W. Kondracki and P. Sadowski, Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3 (1986), 421-434. Zbl0624.53055

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.