The global basie dimension of artin rings
Hagen Meltzer; Andrzej Skowroński
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984
Access Full Book
topAbstract
topHow to cite
topHagen Meltzer, and Andrzej Skowroński. The global basie dimension of artin rings. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268476>.
@book{HagenMeltzer1984,
abstract = {CONTENTS1. Introduction.............52. Basic dimension of artin rings................73. Cobasic dimension of artin rings............84. Basic dimension of algebras stably equivalent to an hereditary artin algebra............125. Hereditary artin algebras of global basic and cobasic dimension 1....................176. Global basic and cobasic dimensions of radical squared zero algebras............34References...............43},
author = {Hagen Meltzer, Andrzej Skowroński},
keywords = {finitely generated right module; right artinian ring; indecomposable direct summand; basic dimension; indecomposable R-modules; artin algebra; finite representation type; hereditary algebra; diagrammatic characterization; hereditary algebras},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The global basie dimension of artin rings},
url = {http://eudml.org/doc/268476},
year = {1984},
}
TY - BOOK
AU - Hagen Meltzer
AU - Andrzej Skowroński
TI - The global basie dimension of artin rings
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction.............52. Basic dimension of artin rings................73. Cobasic dimension of artin rings............84. Basic dimension of algebras stably equivalent to an hereditary artin algebra............125. Hereditary artin algebras of global basic and cobasic dimension 1....................176. Global basic and cobasic dimensions of radical squared zero algebras............34References...............43
LA - eng
KW - finitely generated right module; right artinian ring; indecomposable direct summand; basic dimension; indecomposable R-modules; artin algebra; finite representation type; hereditary algebra; diagrammatic characterization; hereditary algebras
UR - http://eudml.org/doc/268476
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.