Connected sequences of stable derived functors and their applications

Daniel Simson; Andrzej Tyc

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1974

Abstract

top
CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors....................................................................................................................................... 114. Functors with, extensions............................................................................................................................................................................... 245. On the exactness of connected sequences................................................................................................................................................ 376. Right and left stable derived functors of contravariant functors. Right stable derived functors of covariant functors................... 397. Symmetric power functor S P n and exterior power functor Λ n ..................................................................................................... 438. On J. H. C. Whitehead’s functor Γ.................................................................................................................................................................. 489. Computation of the modules L q s S P 2 ( R ) , L q s Λ 2 ( R ) and L q s Γ ( R ) ........................................................................... 5310. Computation of the functors L q s S P 2 , L q s Λ 2 and L q s Γ ............................................................................................ 5911. Eilenberg-MacLane’s stable homology and cohomology functors...................................................................................................... 64References............................................................................................................................................................................................................ 67

How to cite

top

Daniel Simson, and Andrzej Tyc. Connected sequences of stable derived functors and their applications. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1974. <http://eudml.org/doc/268482>.

@book{DanielSimson1974,
abstract = {CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors....................................................................................................................................... 114. Functors with, extensions............................................................................................................................................................................... 245. On the exactness of connected sequences................................................................................................................................................ 376. Right and left stable derived functors of contravariant functors. Right stable derived functors of covariant functors................... 397. Symmetric power functor $SP^n$ and exterior power functor $Λ^n$..................................................................................................... 438. On J. H. C. Whitehead’s functor Γ.................................................................................................................................................................. 489. Computation of the modules $L^s_qSP^2(R)$, $L^s_qΛ^2(R)$ and $L^s_qΓ(R)$........................................................................... 5310. Computation of the functors $L^s_qSP^2$, $L^s_qΛ^2$ and $L^s_qΓ$............................................................................................ 5911. Eilenberg-MacLane’s stable homology and cohomology functors...................................................................................................... 64References............................................................................................................................................................................................................ 67},
author = {Daniel Simson, Andrzej Tyc},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Connected sequences of stable derived functors and their applications},
url = {http://eudml.org/doc/268482},
year = {1974},
}

TY - BOOK
AU - Daniel Simson
AU - Andrzej Tyc
TI - Connected sequences of stable derived functors and their applications
PY - 1974
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors....................................................................................................................................... 114. Functors with, extensions............................................................................................................................................................................... 245. On the exactness of connected sequences................................................................................................................................................ 376. Right and left stable derived functors of contravariant functors. Right stable derived functors of covariant functors................... 397. Symmetric power functor $SP^n$ and exterior power functor $Λ^n$..................................................................................................... 438. On J. H. C. Whitehead’s functor Γ.................................................................................................................................................................. 489. Computation of the modules $L^s_qSP^2(R)$, $L^s_qΛ^2(R)$ and $L^s_qΓ(R)$........................................................................... 5310. Computation of the functors $L^s_qSP^2$, $L^s_qΛ^2$ and $L^s_qΓ$............................................................................................ 5911. Eilenberg-MacLane’s stable homology and cohomology functors...................................................................................................... 64References............................................................................................................................................................................................................ 67
LA - eng
UR - http://eudml.org/doc/268482
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.