A remark on the generalized smashing conjecture.
In this note we show that the main results of the paper [PR] can be obtained as consequences of more general results concerning categories whose morphisms can be uniquely presented as compositions of morphisms of their two subcategories with the same objects. First we will prove these general results and then we will apply it to the case of finite noncommutative sets.
In [2] an internal homology theory of crossed modules was defined (CCG-homology for short), which is very much related to the homology of the classifying spaces of crossed modules ([5]). The goal of this note is to construct a low-dimensional homology exact sequence corresponding to a central extension of crossed modules, which is quite similar to the one constructed in [3] for group homology.
Les foncteurs entre espaces vectoriels, ou représentations génériques des groupes linéaires d’après Kuhn, interviennent en topologie algébrique et en -théorie comme en théorie des représentations. Nous présentons ici une nouvelle méthode pour aborder les problèmes de finitude et la dimension de Krull dans ce contexte.Plus précisément, nous démontrons que, dans la catégorie des foncteurs entre espaces vectoriels sur , le produit tensoriel entre , où désigne le foncteur projectif , et un foncteur...
En un trabajo de Huq se introduce el concepto de resolubilidad en categorías [2]. En mi tesis doctoral [1 (4.2.3), p.87] se hace distinción entre resolubilidad fuerte (resolubilidad de Huq) y resolubilidad, conceptos que coinciden en el caso de grupos, anillos asociativos y álgebras de Lie, pero no en cualquier tipo de Ω-grupos, donde la resolubilidad corresponde a la introducida en [1].El objeto de esta nota es dar una caracterización de los objetos resolubles (corolario 6), la cual nos permite...
On calcule dans cet article l’homologie stable des groupes orthogonaux et symplectiques sur un corps fini à coefficients tordus par un endofoncteur usuel des -espaces vectoriels (puissance extérieure, symétrique, divisée...). Par homologie stable, on entend, pour tout entier naturel , les colimites des espaces vectoriels et — dans cette situation, la stabilisation (avec une borne explicite en fonction de et ) est un résultat classique de Charney. Tout d’abord, nous donnons un cadre...