Dieudonné-type theorems for lattice group-valued k -triangular set functions

Antonio Boccuto; Xenofon Dimitriou

Kybernetika (2019)

  • Volume: 55, Issue: 2, page 233-251
  • ISSN: 0023-5954

Abstract

top
Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for k -triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.

How to cite

top

Boccuto, Antonio, and Dimitriou, Xenofon. "Dieudonné-type theorems for lattice group-valued $k$-triangular set functions." Kybernetika 55.2 (2019): 233-251. <http://eudml.org/doc/294748>.

@article{Boccuto2019,
abstract = {Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.},
author = {Boccuto, Antonio, Dimitriou, Xenofon},
journal = {Kybernetika},
keywords = {lattice group; $(D)$-convergence; $k$-triangular set function; $(s)$-bounded set function; Fremlin lemma; limit theorem; Brooks–Jewett theorem; Dieudonné theorem; Nikodým boundedness theorem},
language = {eng},
number = {2},
pages = {233-251},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dieudonné-type theorems for lattice group-valued $k$-triangular set functions},
url = {http://eudml.org/doc/294748},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Boccuto, Antonio
AU - Dimitriou, Xenofon
TI - Dieudonné-type theorems for lattice group-valued $k$-triangular set functions
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 233
EP - 251
AB - Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.
LA - eng
KW - lattice group; $(D)$-convergence; $k$-triangular set function; $(s)$-bounded set function; Fremlin lemma; limit theorem; Brooks–Jewett theorem; Dieudonné theorem; Nikodým boundedness theorem
UR - http://eudml.org/doc/294748
ER -

References

top
  1. Atanassov, K., Intuitionistic Fuzzy Sets: Theory and Applications., Physica-Verlag, Heidelberg 1999. MR1718470
  2. Barbieri, G., On Dieudonné's boundedness theorem., Boll. Un. Mat. Ital. II 9 (2009), 343-348. MR2537274
  3. Barbieri, G., 10.1007/bf00966618, Sci. Math. Japon. 44 (2009), 403-408. MR2562049DOI10.1007/bf00966618
  4. Barbieri, G., Boccuto, A., On extensions of k -subadditive lattice group-valued capacities., Italian J. Pure Appl. Math. 37 (2017), 387-408. MR3622941
  5. Barbieri, G., Boccuto, A., 10.1515/ms-2017-0059, Math. Slovaca 67 (2017), 1387-1408. MR3739367DOI10.1515/ms-2017-0059
  6. Boccuto, A., Dieudonné-type theorems for means with values in Riesz spaces., Tatra Mt. Math. Publ. 8 (1996), 29-42. MR1475257
  7. Boccuto, A., Integration in Riesz spaces with respect to ( D ) -convergence., Tatra Mt. Math. Publ. 10 (1997), 33-54. MR1469280
  8. Boccuto, A., Egorov property and weak σ -distributivity in Riesz spaces., Acta Math. (Nitra) 6 (2003), 61-66. 
  9. Boccuto, A., Candeloro, D., 10.1006/jmaa.2001.7715, J. Math. Anal. Appl. 265 (2002), 170-194. MR1874264DOI10.1006/jmaa.2001.7715
  10. Boccuto, A., Candeloro, D., 10.14321/realanalexch.27.2.0473, Real Anal. Exchange 27 (2002), 473-484. MR1922663DOI10.14321/realanalexch.27.2.0473
  11. Boccuto, A., Candeloro, D., Uniform boundedness theorems in Riesz spaces., Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. MR2152821
  12. Boccuto, A., Candeloro, D., Some new results about Brooks-Jewett and Dieudonné-type theorems in ( ) -groups., Kybernetika 46 (2010), 1049-1060. MR2797426
  13. Boccuto, A., Candeloro, D., 10.2478/s11533-010-0097-1, Cent. Eur. J. Math. 9 (2) (2011), 433-440. MR2772437DOI10.2478/s11533-010-0097-1
  14. Boccuto, A., Dimitriou, X., 10.5539/jmr.v5n2p42, J. Math. Research 5 (2013), 43-60. DOI10.5539/jmr.v5n2p42
  15. Boccuto, A., Dimitriou, X., Limit theorems for topological group-valued maesures., Acta Math. (Nitra) 16 (2013), 37-43. MR3365401
  16. Boccuto, A., Dimitriou, X., 10.2174/97816810800931150101, Bentham Science Publ., Sharjah 2015. MR3478113DOI10.2174/97816810800931150101
  17. Boccuto, A., Dimitriou, X., 10.1515/tmmp-2016-0001, Tatra Mt. Math. Publ. 65 (2016), 1-21. MR3529302DOI10.1515/tmmp-2016-0001
  18. Boccuto, A., Dimitriou, X., Matrix theorems and interchange for lattice group-valued series in the filter convergence setting., Bull. Hellenic Math. Soc. 59 (2016), 39-55. MR3602294
  19. Boccuto, A., Dimitriou, X., Limit theorems for lattice group-valued k -triangular set functions., In: Proc. 33rd PanHellenic Conference on Mathematical Education, Chania 2016, pp. 1-10. MR3825621
  20. Boccuto, A., Dimitriou, X., 10.12988/ams.2017.710298, Appl. Math. Sci. 11 (2017), 2825-2833. MR3825621DOI10.12988/ams.2017.710298
  21. Boccuto, A., Dimitriou, X., Non-Additive Lattice Group-Valued Set Functions And Limit Theorems., Lambert Acad. Publ., Mauritius 2017. 
  22. Boccuto, A., Dimitriou, X., 10.1007/s00009-018-1222-9, Mediterranean J. Math. 15 (2018), 1-20. MR3825621DOI10.1007/s00009-018-1222-9
  23. Boccuto, A., Dimitriou, X., Filter exhaustiveness and filter limit theorems for k -triangular lattice group-valued set functions., Rend. Lincei Mat. Appl. (2019), in press. MR3825621
  24. Boccuto, A., Dimitriou, X., Papanastassiou, N., 10.2478/s11533-011-0083-2, Cent. Eur. J. Math. 9 (2011), 1298-1311. MR2836722DOI10.2478/s11533-011-0083-2
  25. Boccuto, A., Dimitriou, X., Papanastassiou, N., Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces., In: Proc. International Conference on Topology and its Applications ICTA 2011, Cambridge Sci. Publ. 2012, pp. 45-58. 
  26. Boccuto, A., Dimitriou, X., Papanastassiou, N., 10.2478/s12175-012-0070-5, Math. Slovaca 62 (2012), 1145-1166. MR3003783DOI10.2478/s12175-012-0070-5
  27. Boccuto, A., Riečan, B., Sambucini, A. R., On the product of M -measures in ( ) -groups., Australian J. Math. Anal. Appl. 7 (2010), 9, 1-8. MR2601882
  28. Boccuto, A., Riečan, B., Vrábelová, M., 10.2174/97816080500311090101, Bentham Science Publ., Sharjah 2009. DOI10.2174/97816080500311090101
  29. Brooks, J. K., Chacon, R. V., 10.1016/0001-8708(80)90023-7, Adv. Math. 37 (1980), 16-26. MR0585896DOI10.1016/0001-8708(80)90023-7
  30. Candeloro, D., On the Vitali-Hahn-Saks, Dieudonné and Nikodým theorems. (In Italian)., Rend. Circ. Mat. Palermo Ser. II Suppl. 8 (1985), 439-445. MR0881420
  31. Candeloro, D., Letta, G., On Vitali-Hahn-Saks and Dieudonné theorems. (In Italian), Rend. Accad. Naz. Sci. XL Mem. Mat. 9 (1985), 203-213. MR0899250
  32. Candeloro, D., Sambucini, A. R., 10.1007/s00009-014-0431-0, Mediterranean J. Math. 12 (2015), 621-637. MR3376802DOI10.1007/s00009-014-0431-0
  33. Cavaliere, P., Lucia, P. de, Regularity and exhaustivity for finitely additive functions. The Dieudonné's convergence theorem., Sci. Math. Japan. 66 (2007), 313-323. MR2361636
  34. Dieudonné, J., Sur la convergence des suites de mesures de Radon., An. Acad. Brasil. Ci. 23 (1951), 21-38. MR0042496
  35. Dobrakov, I., On submeasures I., Dissertationes Math. 112 (1974), 5-35. MR0367140
  36. Dugundji, J., Topology., Allyn and Bacon Inc., Boston 1966. MR0193606
  37. Fremlin, D. H., 10.1112/jlms/s2-11.3.276, J. London Math. Soc. 11 (1975), 276-284. MR0380345DOI10.1112/jlms/s2-11.3.276
  38. Guariglia, E., 10.1016/0022-247x(90)90412-9, J. Math. Anal. Appl. 145 (1990), 447-454. MR1038169DOI10.1016/0022-247x(90)90412-9
  39. Pap, E., 10.1007/bf01874617, Acta Sci. Math. 50 (1986), 159-167. MR0862190DOI10.1007/bf01874617
  40. Pap, E., The Vitali-Hahn-Saks Theorems for k -triangular set functions., Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. MR0922985
  41. Pap, E., Null-Additive Set Functions., Kluwer Acad. Publishers/Ister Science, Dordrecht/Bratislava 1995. MR1368630
  42. Riečan, B., Neubrunn, T., 10.1007/978-94-015-8919-2, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava 1997. Zbl0916.28001MR1489521DOI10.1007/978-94-015-8919-2
  43. Saeki, S., 10.1090/s0002-9939-1992-1088446-8, Proc. Amer. Math. Soc. 114 (1992), 775-782. MR1088446DOI10.1090/s0002-9939-1992-1088446-8
  44. Schachermayer, W., On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras., Dissertationes Math. 214 (1982), 1-33. MR0673286
  45. Stein, J. D., Jr., 10.1307/mmj/1029000848, Michigan Math. J. 19 (1972), 161-165. MR0299746DOI10.1307/mmj/1029000848
  46. Swartz, C., 10.1007/bf01195219, Arch. Math. 53 (1989), 390-393. MR1016003DOI10.1007/bf01195219
  47. Ventriglia, F., 10.1016/j.jmaa.2010.01.017, J. Math. Anal. Appl. 367 (2010), 296-303. MR2600399DOI10.1016/j.jmaa.2010.01.017
  48. Vulikh, B. Z., Introduction to the Theory of Partially Ordered Spaces., Wolters-Noordhoff Sci. Publ., Groningen 1967. MR0224522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.