Free topological vector spaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984
Access Full Book
topAbstract
topHow to cite
topJoe Flood. Free topological vector spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268531>.
@book{JoeFlood1984,
abstract = {CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter 4. Uniform pairs....................................................................32PART II. Properties of the free functors - Introduction........................40Chapter 5. Monads, comonads and extension...................................40Chapter 6. Invariance and tensors.....................................................54PART III. Free complete topological vector spaces - Introduction.......63Chapter 7. Measure spaces and completion......................................64Chapter 8. Properties of the completion.............................................77Chapter 9. Variations on a theme.......................................................86Appendix............................................................................................90References........................................................................................91List of notation...................................................................................94},
author = {Joe Flood},
keywords = {complete locally fine spaces; completion of the free vector space; space of measures with compact support; uniform spaces; sets of large cardinality; Krein theorem; separate Fubini theorem; Dugundji theorem; group algebra; group ring},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Free topological vector spaces},
url = {http://eudml.org/doc/268531},
year = {1984},
}
TY - BOOK
AU - Joe Flood
TI - Free topological vector spaces
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter 4. Uniform pairs....................................................................32PART II. Properties of the free functors - Introduction........................40Chapter 5. Monads, comonads and extension...................................40Chapter 6. Invariance and tensors.....................................................54PART III. Free complete topological vector spaces - Introduction.......63Chapter 7. Measure spaces and completion......................................64Chapter 8. Properties of the completion.............................................77Chapter 9. Variations on a theme.......................................................86Appendix............................................................................................90References........................................................................................91List of notation...................................................................................94
LA - eng
KW - complete locally fine spaces; completion of the free vector space; space of measures with compact support; uniform spaces; sets of large cardinality; Krein theorem; separate Fubini theorem; Dugundji theorem; group algebra; group ring
UR - http://eudml.org/doc/268531
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.