Free topological vector spaces

Joe Flood

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984

Abstract

top
CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter 4. Uniform pairs....................................................................32PART II. Properties of the free functors - Introduction........................40Chapter 5. Monads, comonads and extension...................................40Chapter 6. Invariance and tensors.....................................................54PART III. Free complete topological vector spaces - Introduction.......63Chapter 7. Measure spaces and completion......................................64Chapter 8. Properties of the completion.............................................77Chapter 9. Variations on a theme.......................................................86Appendix............................................................................................90References........................................................................................91List of notation...................................................................................94

How to cite

top

Joe Flood. Free topological vector spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268531>.

@book{JoeFlood1984,
abstract = {CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter 4. Uniform pairs....................................................................32PART II. Properties of the free functors - Introduction........................40Chapter 5. Monads, comonads and extension...................................40Chapter 6. Invariance and tensors.....................................................54PART III. Free complete topological vector spaces - Introduction.......63Chapter 7. Measure spaces and completion......................................64Chapter 8. Properties of the completion.............................................77Chapter 9. Variations on a theme.......................................................86Appendix............................................................................................90References........................................................................................91List of notation...................................................................................94},
author = {Joe Flood},
keywords = {complete locally fine spaces; completion of the free vector space; space of measures with compact support; uniform spaces; sets of large cardinality; Krein theorem; separate Fubini theorem; Dugundji theorem; group algebra; group ring},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Free topological vector spaces},
url = {http://eudml.org/doc/268531},
year = {1984},
}

TY - BOOK
AU - Joe Flood
TI - Free topological vector spaces
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter 4. Uniform pairs....................................................................32PART II. Properties of the free functors - Introduction........................40Chapter 5. Monads, comonads and extension...................................40Chapter 6. Invariance and tensors.....................................................54PART III. Free complete topological vector spaces - Introduction.......63Chapter 7. Measure spaces and completion......................................64Chapter 8. Properties of the completion.............................................77Chapter 9. Variations on a theme.......................................................86Appendix............................................................................................90References........................................................................................91List of notation...................................................................................94
LA - eng
KW - complete locally fine spaces; completion of the free vector space; space of measures with compact support; uniform spaces; sets of large cardinality; Krein theorem; separate Fubini theorem; Dugundji theorem; group algebra; group ring
UR - http://eudml.org/doc/268531
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.