top
CONTENTSIntroduction......................................................................................................................................... 5Chapter I. THEORY IN CLASSICAL POEM FOB FUNCTIONS 1. Equicontinuity in quasi-uniform context................................................................... 6 2. Quasi-uniform convergence on compacta............................................................. 8 3. k-spaces and ,-spaces................................................................................... 9 4. A separating equivalence relation............................................................................ 11 5. Ascoli theorem............................................................................................................. 11Chapter II. TOPOLOGICAL THEORY FOR MULTIFUNCTIONS 6. Preliminary lemmas for multifunctions................................................................... 14 7. Tychonoff theorem for multifunctions....................................................................... 16 8. Exponential law for multifunctions............................................................................ 18 9. Product of two k-spaces............................................................................................. 20 10. Non-Hausdorff theorem of the Gale type.............................................................. 21 11. Non-Hausdorff theorem of the Kelley—Morse type............................................ 24Chapter III. UNIFORM THEORY FOR MULTIFUNCTIONS 12. Ascoli theorems......................................................................................................... 27 13. Reduction to function context.................................................................................. 32References.................................................................................................................................................. 36
Pedro Morales. Non-Hausdorff Ascoli theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1974. <http://eudml.org/doc/268533>.
@book{PedroMorales1974, abstract = {CONTENTSIntroduction......................................................................................................................................... 5Chapter I. THEORY IN CLASSICAL POEM FOB FUNCTIONS 1. Equicontinuity in quasi-uniform context................................................................... 6 2. Quasi-uniform convergence on compacta............................................................. 8 3. k-spaces and $k_3$,-spaces................................................................................... 9 4. A separating equivalence relation............................................................................ 11 5. Ascoli theorem............................................................................................................. 11Chapter II. TOPOLOGICAL THEORY FOR MULTIFUNCTIONS 6. Preliminary lemmas for multifunctions................................................................... 14 7. Tychonoff theorem for multifunctions....................................................................... 16 8. Exponential law for multifunctions............................................................................ 18 9. Product of two k-spaces............................................................................................. 20 10. Non-Hausdorff theorem of the Gale type.............................................................. 21 11. Non-Hausdorff theorem of the Kelley—Morse type............................................ 24Chapter III. UNIFORM THEORY FOR MULTIFUNCTIONS 12. Ascoli theorems......................................................................................................... 27 13. Reduction to function context.................................................................................. 32References.................................................................................................................................................. 36}, author = {Pedro Morales}, language = {eng}, location = {Warszawa}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, title = {Non-Hausdorff Ascoli theory}, url = {http://eudml.org/doc/268533}, year = {1974}, }
TY - BOOK AU - Pedro Morales TI - Non-Hausdorff Ascoli theory PY - 1974 CY - Warszawa PB - Instytut Matematyczny Polskiej Akademi Nauk AB - CONTENTSIntroduction......................................................................................................................................... 5Chapter I. THEORY IN CLASSICAL POEM FOB FUNCTIONS 1. Equicontinuity in quasi-uniform context................................................................... 6 2. Quasi-uniform convergence on compacta............................................................. 8 3. k-spaces and $k_3$,-spaces................................................................................... 9 4. A separating equivalence relation............................................................................ 11 5. Ascoli theorem............................................................................................................. 11Chapter II. TOPOLOGICAL THEORY FOR MULTIFUNCTIONS 6. Preliminary lemmas for multifunctions................................................................... 14 7. Tychonoff theorem for multifunctions....................................................................... 16 8. Exponential law for multifunctions............................................................................ 18 9. Product of two k-spaces............................................................................................. 20 10. Non-Hausdorff theorem of the Gale type.............................................................. 21 11. Non-Hausdorff theorem of the Kelley—Morse type............................................ 24Chapter III. UNIFORM THEORY FOR MULTIFUNCTIONS 12. Ascoli theorems......................................................................................................... 27 13. Reduction to function context.................................................................................. 32References.................................................................................................................................................. 36 LA - eng UR - http://eudml.org/doc/268533 ER -