On two-to-one continuous functions
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1961
Access Full Book
topAbstract
topHow to cite
topJ. Mioduszewski. On two-to-one continuous functions. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1961. <http://eudml.org/doc/268559>.
@book{J1961,
abstract = {CONTENTSIntroduction................................................................................................................................................................................3I. General properties of k-to-one functions on locally compact spaces1. Multi-valued functions Ф and ψ......................................................................................................................................... 62. The proof of (I.11)............................................................................................................................................................... 73. Some conditions for ψ to be discontinuous at x ≠ p................................................................................................... 84. Some properties of $f\{-1\}f$ on $\mathcal \{X\}$ .............................................................................................................. 95. Partial functions................................................................................................................................................................... 96. A converse problem............................................................................................................................................................ 9II. General properties of two-to-one functions on locally compact spaces1. Semicontinuous involution φ............................................................................................................................................ 122. Classification of points of discontinuity of φ.................................................................................................................. 133. WED-points of φ|X, where X is a closed subset of $\mathcal \{X\}$........................................................................... 134. The function $\tilde\{φ\}$ on V............................................................................................................................................. 145. The function φ considered on $\overline\{WED(φ|X)\}$................................................................................................ 15III. Behaviour of semicontinuous involution at Euclidean points1. Definitions............................................................................................................................................................................ 172. The function (φ|X), where X is the closure of a spherical (hemispherical) pseudo-neighbourhoodof a PE-point............................................................................................................................................................................. 173. The main theorem.............................................................................................................................................................. 194. Immediate consequences of Theorem 1....................................................................................................................... 20IV. Some applications to compact spaces1. Civin’s theorems................................................................................................................................................................. 232. Two-to-one continuous functions on graphs................................................................................................................ 243. Two-to-one functions on the closures of plane domains.......................................................................................... 264. Two-to-one functions on some class of irreducible continua.................................................................................... 285. The non-existence of two-to-one continuous functions on the indecomposable continuum$\mathcal \{B\}_0$...................................................................................................................................................................... 30V. Two-to-one continuous functions on locally compact manifolds1. The function $\tilde\{φ\}$ on $\mathcal \{X\}$ — SED(φ).................................................................................................. 332. The strong accessibility of points of SED(φ)................................................................................................................. 343. The one-dimensional case............................................................................................................................................... 364. The existence of two-to-one continuous functions on Euclidean spaces $E^n$ for n ≥ 2.................................. 39References.............................................................................................................................................................................. 42},
author = {J. Mioduszewski},
keywords = {topology},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On two-to-one continuous functions},
url = {http://eudml.org/doc/268559},
year = {1961},
}
TY - BOOK
AU - J. Mioduszewski
TI - On two-to-one continuous functions
PY - 1961
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................................................3I. General properties of k-to-one functions on locally compact spaces1. Multi-valued functions Ф and ψ......................................................................................................................................... 62. The proof of (I.11)............................................................................................................................................................... 73. Some conditions for ψ to be discontinuous at x ≠ p................................................................................................... 84. Some properties of $f{-1}f$ on $\mathcal {X}$ .............................................................................................................. 95. Partial functions................................................................................................................................................................... 96. A converse problem............................................................................................................................................................ 9II. General properties of two-to-one functions on locally compact spaces1. Semicontinuous involution φ............................................................................................................................................ 122. Classification of points of discontinuity of φ.................................................................................................................. 133. WED-points of φ|X, where X is a closed subset of $\mathcal {X}$........................................................................... 134. The function $\tilde{φ}$ on V............................................................................................................................................. 145. The function φ considered on $\overline{WED(φ|X)}$................................................................................................ 15III. Behaviour of semicontinuous involution at Euclidean points1. Definitions............................................................................................................................................................................ 172. The function (φ|X), where X is the closure of a spherical (hemispherical) pseudo-neighbourhoodof a PE-point............................................................................................................................................................................. 173. The main theorem.............................................................................................................................................................. 194. Immediate consequences of Theorem 1....................................................................................................................... 20IV. Some applications to compact spaces1. Civin’s theorems................................................................................................................................................................. 232. Two-to-one continuous functions on graphs................................................................................................................ 243. Two-to-one functions on the closures of plane domains.......................................................................................... 264. Two-to-one functions on some class of irreducible continua.................................................................................... 285. The non-existence of two-to-one continuous functions on the indecomposable continuum$\mathcal {B}_0$...................................................................................................................................................................... 30V. Two-to-one continuous functions on locally compact manifolds1. The function $\tilde{φ}$ on $\mathcal {X}$ — SED(φ).................................................................................................. 332. The strong accessibility of points of SED(φ)................................................................................................................. 343. The one-dimensional case............................................................................................................................................... 364. The existence of two-to-one continuous functions on Euclidean spaces $E^n$ for n ≥ 2.................................. 39References.............................................................................................................................................................................. 42
LA - eng
KW - topology
UR - http://eudml.org/doc/268559
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.