Exactly two-to-one maps from continua onto arc-continua
Wojciech Dębski; J. Heath; J. Mioduszewski
Fundamenta Mathematicae (1996)
- Volume: 150, Issue: 2, page 113-126
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDębski, Wojciech, Heath, J., and Mioduszewski, J.. "Exactly two-to-one maps from continua onto arc-continua." Fundamenta Mathematicae 150.2 (1996): 113-126. <http://eudml.org/doc/212165>.
@article{Dębski1996,
abstract = {Continuing studies on 2-to-1 maps onto indecomposable continua having only arcs as proper non-degenerate subcontinua - called here arc-continua - we drop the hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction if Y is orientable, and that it is a local homeomorphism if Y is not orientable.},
author = {Dębski, Wojciech, Heath, J., Mioduszewski, J.},
journal = {Fundamenta Mathematicae},
keywords = {local bundle; arc-continuum; local homeomorphism},
language = {eng},
number = {2},
pages = {113-126},
title = {Exactly two-to-one maps from continua onto arc-continua},
url = {http://eudml.org/doc/212165},
volume = {150},
year = {1996},
}
TY - JOUR
AU - Dębski, Wojciech
AU - Heath, J.
AU - Mioduszewski, J.
TI - Exactly two-to-one maps from continua onto arc-continua
JO - Fundamenta Mathematicae
PY - 1996
VL - 150
IS - 2
SP - 113
EP - 126
AB - Continuing studies on 2-to-1 maps onto indecomposable continua having only arcs as proper non-degenerate subcontinua - called here arc-continua - we drop the hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction if Y is orientable, and that it is a local homeomorphism if Y is not orientable.
LA - eng
KW - local bundle; arc-continuum; local homeomorphism
UR - http://eudml.org/doc/212165
ER -
References
top- [1] J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. Zbl0664.54026
- [2] J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math. 131 (1988), 53-67.
- [3] J. M. Aarts and L. G. Oversteegen, Flowbox manifolds, Trans. Amer. Math. Soc. 327 (1991), 449-463. Zbl0768.54027
- [4] W. Dębski, Two-to-one maps on solenoids and Knaster continua, Fund. Math. 141 (1992), 277-285. Zbl0822.54028
- [5] W. Dębski, J. Heath and J. Mioduszewski, Exactly two-to-one maps from continua onto some tree-like continua, Fund. Math., 269-276. Zbl0807.54015
- [6] W. H. Gottschalk, On k-to-1 transformations, Bull. Amer. Math. Soc. 53 (1947), 168-169. Zbl0040.25402
- [7] J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only, (I), Houston J. Math. 5 (1979), 483-501. Zbl0412.54039
- [8] O. G. Harrold, Exactly (k,1) transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823-834. Zbl0024.19101
- [9] J. Heath, 2-to-1 maps with hereditarily indecomposable images, Proc. Amer. Math. Soc. 113 (1991), 839-846. Zbl0738.54012
- [10] J. Heath, There is no exactly k-to-1 function from any continuum onto [0,1], or any dendrite, with only finitely many discontinuities, Trans. Amer. Math. Soc. 306 (1988), 293-305. Zbl0649.54006
- [11] J. Hocking and G. Young, Topology, Addison-Wesley, 1961.
- [12] H. B. Keynes and M. Sears, Modeling expansion in real flows, Pacific J. Math. 85 (1979), 111-124.
- [13] J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961). Zbl0104.17304
- [14] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly (n,1) images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. Zbl0503.54018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.