Two-to-one maps on solenoids and Knaster continua

Wojciech Dębski

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 3, page 277-285
  • ISSN: 0016-2736

Abstract

top
It is shown that 2-to-1 maps cannot be defined on certain solenoids, in particular on the dyadic solenoid, and on Knaster continua.

How to cite

top

Dębski, Wojciech. "Two-to-one maps on solenoids and Knaster continua." Fundamenta Mathematicae 141.3 (1992): 277-285. <http://eudml.org/doc/211966>.

@article{Dębski1992,
author = {Dębski, Wojciech},
journal = {Fundamenta Mathematicae},
keywords = {continuous involution; dyadic solenoid; Knaster continua},
language = {eng},
number = {3},
pages = {277-285},
title = {Two-to-one maps on solenoids and Knaster continua},
url = {http://eudml.org/doc/211966},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Dębski, Wojciech
TI - Two-to-one maps on solenoids and Knaster continua
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 277
EP - 285
LA - eng
KW - continuous involution; dyadic solenoid; Knaster continua
UR - http://eudml.org/doc/211966
ER -

References

top
  1. [1] P. Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49-57. Zbl0060.41012
  2. [2] A. V. Chernavskiĭ, The impossibility of a strictly double continuous partition of the homologous cube, Dokl. Akad. Nauk SSSR 144 (1962), 286-289 (in Russian). 
  3. [3] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, 1952. Zbl0047.41402
  4. [4] V. B. Fugate and T. B. McLean, Compact groups of homeomorphisms on tree-like continua, Trans. Amer. Math. Soc. 267 (1981), 609-620. Zbl0486.54028
  5. [5] O. G. Harrold, The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789-793. Zbl0022.41001
  6. [6] J. Heath, Tree-like continua and exactly k-to-1 functions, Proc. Amer. Math. Soc. 105 (1989), 765-772. Zbl0664.54008
  7. [7] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. I, Springer, 1963. Zbl0115.10603
  8. [8] J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961). Zbl0104.17304
  9. [9] L. Pontryagin, Topological Groups, Gordon and Breach, New York 1966. 
  10. [10] I. Rosenholtz, Open maps of chainable continua, Proc. Amer. Math. Soc. 42 (1974), 258-264. Zbl0276.54033
  11. [11] W. Scheffer, Maps between topological groups that are homotopic to homomorphisms, ibid. 33 (1972), 562-567. Zbl0236.22008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.