Wallman covers of compact spaces

M. Henriksen; J. Vermeer; R. G. Woods

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1989

Abstract

top
CONTENTS§1. Introduction.......................................................................................................5§2. The construction of the Wallman cover.............................................................8§3. The minimal clopen cozero-complemented cover of a compact space............16§4. Wallman compactifications versus Wallman cover...........................................24References...........................................................................................................31

How to cite

top

M. Henriksen, J. Vermeer, and R. G. Woods. Wallman covers of compact spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1989. <http://eudml.org/doc/268595>.

@book{M1989,
abstract = {CONTENTS§1. Introduction.......................................................................................................5§2. The construction of the Wallman cover.............................................................8§3. The minimal clopen cozero-complemented cover of a compact space............16§4. Wallman compactifications versus Wallman cover...........................................24References...........................................................................................................31},
author = {M. Henriksen, J. Vermeer, R. G. Woods},
keywords = {Wallman covers; complete Boolean algebra of all regular closed subsets of a Tikhonov space; Wallman base; Wallman compactification},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Wallman covers of compact spaces},
url = {http://eudml.org/doc/268595},
year = {1989},
}

TY - BOOK
AU - M. Henriksen
AU - J. Vermeer
AU - R. G. Woods
TI - Wallman covers of compact spaces
PY - 1989
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS§1. Introduction.......................................................................................................5§2. The construction of the Wallman cover.............................................................8§3. The minimal clopen cozero-complemented cover of a compact space............16§4. Wallman compactifications versus Wallman cover...........................................24References...........................................................................................................31
LA - eng
KW - Wallman covers; complete Boolean algebra of all regular closed subsets of a Tikhonov space; Wallman base; Wallman compactification
UR - http://eudml.org/doc/268595
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.